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ABSTRACT 

The massively parallel processor (MPP) system 
is designed to process satellite imagery at high 
rates. A large number ( 16,384) of processing ele- 
ments (PE’s) are configured in a square array. For 
optimum performance on operands of arbitrary length, 
processing is performed in a bit-serial manner. On 
8-bit integer data, addition can occur at 6553 million 
operations per second (MOPS) and multiplication at 
1861 MOPS. On 32-bit floating-point data, addition 
can occur at 430 MOPS and multiplication at 216 
MOPS. 

INTRODUCTION 

In this decade, NASA will orbit imaging sensors 

that can generate data at rates up to 10 13 bits per 
day. A variety of image processing tasks such as 
geometric correction, correlation, image registration, 
feature selection, multispectral classification, and 
area measurement are required to extract useful in- 
formation from this mass of data. The expected 

workioad is between 10’ and 10 10 operations per 
second. 

In 1971, NASA Goddard Space Flight Center 
initiated a program to develop ultra high-speed im- 
age processing systems capable of processing this 
workload. These systems use thousands of proc- 
essing elements operating simultaneously (massive 
parallelism) to achieve their speed. They exploit 
the fact that the typical satellite image contains 
millions of picture elements (pixels) that can gen- 
erally be processed at the same time. 

In December 1979, NASA Goddard awarded a con- 
tract to Goodyear Aerospace to construct a massively 
parallel processor (MPP) to be delivered in the first 
quarter of 1982. The basic elements of the MPP 
architecture were developed at NASA Goddard. This 
paper presents the architecture of the MPP system. 
The major components are shown in Figure 1. The 
array unit (ARU) processes arrays of data at high 
speed and is controlled by the array control unit 
(ACU) , which also performs scalar arithmetic. The 

*This work was partially funded by NASA Goddard 
Space Flight Center under Contracts NAS 5-25392 
and NAS 5-25942. 
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Figure 1 - Block Diagram of Massively Parallel 
Processor (MPP) 

program and data management unit (PDMU) controls 
the overall flow of data and programs through the 
system and handles certain ancillary tasks such as 
program development and diagnostics. The PDMU- 
ARlJ I/O registers buffer and reorder data between 
the ARU , PDMU , and external (host) computer. 
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ARRAY UNIT 
Logically. the array unit (ARU) contains 16,384 

processing elements (PE’s) organized as a 128 by 128 
square. Physically, the ARU has an extra 128 by 4 
rectangle of PE’s that is used to reconfigure the ARU 
when a PE fault is detected. The PE’s are bit-serial 
processors for efficiently processing operands of 
any length. The basic clock rate is 10 megahertz. 
With 16.384 PE’s operating in parallel, the ARU has 
a very high processing speed (see Table I). Despite 
the bit-serial nature of the PE’s, even the floating- 
point speeds compare favorably with several fast 
number crunchers, 

TABLE I - SPEED OF TYPICAL OPERATIONS 

Operations 

Addition of arrays 
8-bit integers (g-bit sum) 
la-bit integers (13-bit sum) 
32-bit floating-point numbers 

Multiplication of arrays (element by 
element ) 

8-bit integers (16-bit product) 
12-bit integers (24-bit product) 
32-bit floating-point numbers 

Multiplication of array by scalar 
8-bit integers (16-bit product) 
Il-bit integers (24-bit product) 
32-bit floating-point numbers 

Speed 
(MOPS)* 

6553 
4428 
430 

1861 
910 
216 

2340 
1260 
373 

* Million operations per second. 

Routing Topology 

Each PE in the 128 by 128 square communicates 
with its nearest neighbor; up, down, right, and 
left - the same routing topology used in ILLIAC IV 
and some other array processors. Alternative rout- 

ing topologies such as the flip network’ or one of 
its equivalents2 were investigated. They have the 
ability to shift data over many PE’s in one step and 
allow data to be accessed in many different direc- 

tions3. Certain paths in the alternative topologies 
have long runs that complicate their layout and 
limit their cycle rate. When the number of PE’s 
interconnected is only 256 as in the STARAN* com- 
puter, this is no problem: when 16,384 PE’s are 
interconnected, it is a severe problem. 

Most of the expected workload does not use the 
routing flexibility of the alternative topologies. The 
ability to access data in different directions is im- 
portant when arrays of data are input and output; 
it can be used to reorient the arrays between the 
bit-plane format of the ARU and the pixel format 
of the outside world. 

These considerations lead to the conclusion that 
the ARU should have a two-dimensional nearest- 
neighbor routing topology such as ILLIAC IV since 
it is easy to implement and matches the two-dimen- 
sional nature of satellite imagery. The problem of 
reformatting I IO data is best handled in I/O buffers 
that may employ the alternative routing topologies. 

Around the edges of the 128 by 128 array of 
PE’s, the edges can be left open (e. 

e’ 
3 row of 

zeros can be entered along the le t edge when rout- 
ing data to the right) or the opposite edges con- 
netted. Cases were found where open edges were 
preferred and other cases where connected edges 
were preferred. It was decided to make edge-con- 
nectivity a programmable function. A topology- 
register in the array control unit defines the con- 
nections between opposite edges of the PE array. 
The top and bottom edges can either be connected 
or left open. The connectivity between the left 
and right edges has four states: open (no connec- 
tion) ; cylindrical (connect the left PE of each row 
to the right PE of the same row) ; open spiral (for 
l<n<127, connect the left PE of row n to the right PE 
of row n-l) ; and closed spiral (like the open spiral, 
but also connect the left PE of row 0 to the right 
PE of row 127). The spiral modes connect the 
16,384 PE’s together in one long linear array. 

Redundancy 
The ARU includes some redundancy so that a 

faulty PE can be bypassed. Redundancy can be 
added to a two-dimensional array of PE’s by adding 
an extra column (or row) of PE’s and inserting by- 
pass gates in the routing network. When a faulty 
PE is discovered, one disables the whole column 
containing the faulty PE and joins the columns on 
either side of it with the bypass gates. 

The PE’s in the ARU are implemented with two-row 
by four-column VLSI chips; thus, it is more conveni- 
ent to add four redundant columns of PE’s and by- 
pass four columns at a time. The PE array has I28 
rows and 132 columns. It is divided into 33 groups, 
with each group containing 128 rows and four col- 
umns of PE’s. Each group has an independent group- 
disable control line from the ACU. When a group iS 
disabled, all its outputs are disabled and the groups 
on either side of it are joined together with 128 by- 
pass gates in the routing network. 

When there is no faulty PE , an arbitrary group 
is disabled so that the size of the logical array is al- 
ways 128 by 128. Application programs are not awarc 
of which group is disabled and need not be modified 
when the disabled group is changed. They always 
use the logical address of a PE to access PE-depend- 
ent data. The logical address of a PE is a pair of 
‘I-bit numbers, X and Y, showing its position in the 
logical array of enabled PE’s. A simple routine exe- 
cuted in 27 microseconds will load the memory of 
each PE with its logical address. No attempt to pre- 
serve PE data is made when a faulty PE is discovered 
since the data in the faulty PE cannot be trusted. 

*Trademark, Goodyear Aerospace Corporation, 
Akron, Ohio. 
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Recovery is accomplished by restarting the appli- 
cation program from the last checkpoint or from the 
beginning. 
Bit-Serial Processing 

The elements in the arrays being processed have 
a wide variety of lengths. A spectral band of an in- 
put pixel may have a resolution of 6 to 12 bits. Inter- 
mediate results can have any length from 6 to more 
than 30 bits. Single-bit flag arrays are generated 
when pixels are classified. Some computations may 
be performed in floating-point. Thus, the PE’s 
should be able to process operands of any length 
efficiently. 

Conventional computers typically use bit-parallel 
arithmetic units with certain fixed-word lengths such 
as 8, 16, or 32 bits. Operands of odd lengths are 
extended to fit the standard word sizes of the ma- 
chine. Some of the hardware in the memory and the 
arithmetic unit is wasted storing and processing the 
extensions. 

Bit-serial processors process operands bit by 
bit and can handle operands of any length without 
any wasted hardware. Their slower speed can be 
counteracted by using a multitude of them and proc- 
essing many operands in parallel. Because of the 
wide variety of operand lengths in the expected 
workload, bit-serial processors are more efficient in 
the use of hardware than bit-parallel processors. 

Processing Elements 

The initial MPP design had PE’s using downshift- 

ing binary counters for arithmetic4. The PE design 
was modified to use a full-adder and shift-register 
combination for arithmetic. The modified design per- 
forms the basic arithmetic operations faster. Each of 
the 16.896 PE’s has 6 one-bit registers (A,B ,C ,G ,P, 
and S) , a shift-register with a programmable length, 
a random-access memory, a data-bus (D) , a full- 
adder, and some combinatorial logic (see Figure 2). 
The basic cycle time of the PE is 100 nanoseconds. 
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Figure 2 - One Processing Element 

Logic and Routing. The P-register is used for 
logic and routing operations. A logic operation com- 
bines the state of the P-register and the state of 
the data-bus (D) to form the new state of the P- 
register. All 16 Boolean functions of the two vari- 
ables, P and D , are implemented (P * D , PvD, Pf3D, 
P*D, F, D, D, etc.). A routing operation shifts 
the state of the P-register into the P-register of a 
neighboring PE (up, down, right, or left). 

Arithmetic. The full adder; shift register; and 
registers A, B , and C are used for bit-serial arith- 
metic operations. To add two operands, the bits of 
one operand are put into the A-register, one at 
a time, least-significant-bit (LSB) first; correspond- 
ing bits of the other operand are put into the P- 
register; the full adder adds the bits in A and P to 
the carry bits in the C-register to form the sum and 
carry bits; each carry bit is stored in C to be added 
in the next cycle; and each sum bit is stored in B . 
The sum formed in B can be stored in the random- 
access memory and/or in the shift register. Two’s- 
complement subtraction is performed by adding the 
one’s-complement of the operand in P to the operand 
in A and setting the initial carry bit in C to 1 in- 
stead of 0. 

Multiplication is a series of addition steps where 
the partial product is recirculated through the shift 
register and registers A and B. Appropriate multi- 
ples of the multiplicand are formed in P and added 
to the partial product as it recirculates. Division 
is performed with a nonrestoring division algorithm. 
The partial dividend is recirculated through the 
shift register and registers A and B while the divisor 
or its complement is formed in P and added to it. 

Floating-point addition compares exponents ; 
places the fraction of the operand with the least 
exponent in the shift register; shifts it to the right 
to align it with the other fraction; puts the sum of 
the fractions in the shift register: and normalizes 
the sum. Floating-point multiplication is a multi- 
plication of the fractions, a normalization of the 
product, and an addition of the exponents. 

Masking. The G-register can hold a mask bit 
that can control the activity of the PE. Unmasked 
logic, routing, and arithmetic operations are per- 
formed in all PE’s. Masked operations are Only per- 
formed in those PE’s where the G-register equals 1. 

Input/Output. The S-register is used to input 
and output ARU data. While the PE’s are proces- 
sing data in the random-access memories, columns 
of input data are shifted into the left side of the 
ARU (Figure 1) and through the S-registers (Fig- 
ure 2) until a plane of 16,384 bits is loaded. The 
input plane is then stored in the random-access 
memories in one lOO-nanosecond cycle by interrupt- 
ing the processing momentarily in all PE’s and mov- 
ing the S-register values to the memory elements. 
Planes of data are output by moving them from the 
memory elements to the S-registers and then shift- 
ing them out column by column through the right 
side of the ARU. The shift rate is 10 megahertz; 
thus, up to 160 megabytes per second can be 
transferred through the ARU I/O ports. Proces- 
sing is interrupted for 100 nanoseconds for each 
bit plane of 16.384 bits transferred - less than 
one percent of the time. 

176 



Storage. The random-access memory stores 
1024 bits per PE. Standard RAM integrated cir- 
cuits make it easy to expand storage as advances 
occur in solid-state memory technology. 

Parity error detection is used to find memory 
faults. A parity bit is added to the eight data 
bits of each 2 by 4 subarray of PE’s. Parity bits 
are generated and stored for each memory write 
cycle and checked when the memories are read. 
A parity error sets an error flip-flop associated 
with the 2 by 4 subarray. A tree ot logic elements 
gives the ACU an inclusive-or of all error flip-flops 
(after some delay). By operating the group-disable 
control lines, the ACU can locate the group contain- 
ing the error and disable it _ 

Sum-Or Tree. The data bus states of all 16,384 
enabled PE’s are combined in a tree of inclusive-or 
elements called the sum-or tree. The output of this 
tree is fed to the ACU and used in certain opera- 
tions such as finding the maximum or minimum value 
of an array in the ARU . 

Packaging 

Standard 4 by 1024-bit RAM elements are used 
for the PE memories. All other components of a 2 
by 4 subarray of PE’s are packaged on a custom 
VLSI CMOS/SOS chip. The VLSI chip also contains 
the parity tree and the bypass gates for the sub- 
array. 

Each 8-l/2-inch by 14-inch printed circuit board 
contains 192 PE’s in an 8 by 24 array. A board CWI- 
tains 24 VLSI chips, 54 memory elements. and some 
support circuitry. Sixteen boards make up an array 
slice of 128 by 24 PE’s. 

Five array slices (80 boards) make up the bulk 
of the ARU (128 by 120 PE’s). The remaining 12 
PE columns are packaged on 16 I /O-processor boards, 
which also contain the topology switches, I/O 
switches, and PDMU-ARU I/O registers. The 96 
boards of the ARU are packaged in one cabinet (the 
leftmost cabinet in Figure 3). Forced-air cooling is 
used _ 

ARRAY CONTROL UNIT 

Like the control units of other paraIle1 proces- 
sors, the array control unit (ACU) performs scalar 
arithmetic and controls the PE’s. It has three WC- 
tions that operate in parallel (see Figure 4): PE 
Control, I/O Control, and Main Control. PE Control 
performs all array arithmetic of the application pro- 
gram. I/O Control manages the flow of data in and 
out of the ARU. Main Control performs all scalar 
arithmetic of the application program. This arrange- 
ment allows array arithmetic, scalar arithmetic, and 
input /output to be overlapped for minimum execution 
time. 

Figure 3 - MPP System Configuration 
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Figure 4 - Block Diagram of Array Control 
Unit (ACU) 

PE Control 
PE Control generates all ARU control signals ex- 

cept those associated with I/O. It contains a 64-bit 
common register to hold scalars and eight 16-bit 
index registers to hold the addresses of bit planes 
in the PE memory elements, to count loop executions, 
and to hold the index of a bit in the common register. 
PE Control reads 64-bit-wide microinstructions from 
PE Control memory. Most instructions are read and 
executed in 100 nanoseconds. One instruction can 
perform several PE operations, manipulate any num- 
ber of index registers, and branch conditionally. 
This reduces overhead significantly so that little, 
if any, PE processing power is wasted. 

PE Control memory contains a number of system 
routines and user-written routines to operate on 
arrays of data in the ARU. The routines include 
both array-to-array and scalar-to-array arithmetic 
operations. A queue between PE Control and Main 
Control queues up to 7 calls to the PE Control 
routines. Each call contains up to 8 initial index- 
register values and up to 64 bits of scalar informa- 
tion . Some routines extract scalar information from 
the ARU (such as a maximum value) and return it 
to Main Control. 
I/O Control 

I /O Control shifts the ARU S-registers, manages 
the flow of information in and out of the ARU ports, 
and interrupts PE Control momentarily to transfer 
data between the S-registers and buffer areas in the 
PE memory elements. Once initiated by Main Control 
or the PDMU , I/O Control can chain through a num- 
ber of I/O commands. It reads the commands from 
Main Control memory. 

Main Control 

Main Control is a fast scalar processor. It reads 
and executes the application program in the Main 
Control memory. It performs all scalar arithmetic it- 
self and places all array arithmetic operations on the 
PE Control call queue. It contains 16 general-pur- 
pose registers, three registers to control the ARU 
group-disable lines, 13 registers associated with the 
call queue, 12 registers to receive scalars from 
PE Control, and four registers to monitor and control 
the status of PE Control and I/O Control. 

PROGRAM AND DATA MANAGEMENT UNIT 

The program and data management unit (PDMU) 
controls the overall flow of programs and data in the 
system (Figure 1). Control is from an alphanumeric 
terminal or from an external (host) computer. The 
PDMU is a minicomputer (DEC PDP-11) with custom 
interfaces to the ACU control memories and registers 
and to the wide I/O ports of the ARU. The operating 
system is DEC’s RSX-11M real-time multiprogramming 
system. 

The PDMU also executes the MPP program- 
development software package. The package in- 
cludes a PE control assembler to develop routines 
for PE Control; a main assembler to develop appli- 
cation programs executing in Main Control; a linker 
to form load modules for the ACU; and a control 
and debug module that loads programs into the 
ACU, controls their execution, and facilitates de- 
bugging. 

PDMU-ARU I/O REGISTERS 

The PDMU-ARU I/O registers reside between 
the wide I/O ports of the ARU and the PDMU. They 
also have a port to an external (host) computer. 
Besides acting as buffers for ARU data being input 
and output, the registers reorder arrays of data. 

Satellite imagery is normally stored in pixel 
order in the PDMU and other conventional computers. 
That is, line 1 pixel 1 followed by line 1 pixel 2, 
etc., followed by the pixels of line 2, line 3, etc. 
The imagery might be band-interleaved (all spectral 
bands of a pixel stored together) or band-sequen- 
tial (band 1 of all pixels followed by band 2 of all 
pixels, etc. 1. 

Arrays of data are transferred through the 
ARU ports in bit-sequential order. That is, the 
most- (or least-) significant bit of 16,384 elements 
followed by the next bit of 16,384 elements, etc. 
Reordering is required to fit the normal order of 
satellite imagery in the PDMU or the host. Thus, 
the PDMU-ARU I/O registers are given a reorder- 
ing capability. 

The registers use a common 21g bit multi- 
dimensional-access (MDA) memory’ to buffer and 
reorder arrays of data. Each of the three memory 
ports (ARU, PDMU, and external computer) can 
read and write data in the MDA memory in a differ- 
erent direction. Data arrays up to 2 19 bits in size 
can be reordered by writing them into the MDA 
memory in one direction and reading them out in a 
different direction. 
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The ARU ports transfer data to and from the 
I/O registers at a 160-megabyte-per-second rate 
(128 bits every 100 nanoseconds). The external 
computer ports transfer data at rates up to six 
megabytes per second. The PDMU transfer rate is 
limited by the PCMU peripherals. The fastest 
peripheral is the disk system, which has a 806- 
kilobyte-per-second rate. 

EXTERNAL COMPUTERINTERFACE 

The MPP, to be delivered to NASA, will use a 
DEC VAX-11/780 computer as a host. The inter- 
face to the host has two links: a high-speed data 
link and a control link. 

The high-speed data link connects the PDMU- 
ARU I/O registers of the MPP to a DR-780 high- 
speed user interface of the VAX-111780. Data can 
be transferred at the rate of the DR-780 (six mega- 
bytes per second). 

The control link is DEC’s standard DECNET link 
between a PDP-11 and a VAX-11/780. The DECNET 
hardware and software let VAX users transfer pro- 
grams and program requests to the MPP. 

CONCLUSION 

The massively parallel processor is a ultra high- 
speed processor designed to perform a variety of 
image processing tasks on satellite imagery. It may 
be used in other applications where large arrays of 
data must be processed quickly. The MPP uses a 
large number of simple PE’s to process arrays of 
data in a bit-plane or bit-slice mode. A number of 
papers in the literature describe other systems 

using the same processing mode S-10 . 
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