
ARCHITECTURE OF A MASSIVELY PARALLEL PROCESSOR*

Dr. Kenneth E. Batcher
Digital Technology Department

Goodyear Aerospace Corporation
Akron, Ohio 44315

ABSTRACT

The massively parallel processor (MPP) system
is designed to process satellite imagery at high
rates. A large number (16,384) of processing ele-
ments (PE’s) are configured in a square array. For
optimum performance on operands of arbitrary length,
processing is performed in a bit-serial manner. On
8-bit integer data, addition can occur at 6553 million
operations per second (MOPS) and multiplication at
1861 MOPS. On 32-bit floating-point data, addition
can occur at 430 MOPS and multiplication at 216
MOPS.

INTRODUCTION

In this decade, NASA will orbit imaging sensors

that can generate data at rates up to 10 13 bits per
day. A variety of image processing tasks such as
geometric correction, correlation, image registration,
feature selection, multispectral classification, and
area measurement are required to extract useful in-
formation from this mass of data. The expected

workioad is between 10’ and 10 10 operations per
second.

In 1971, NASA Goddard Space Flight Center
initiated a program to develop ultra high-speed im-
age processing systems capable of processing this
workload. These systems use thousands of proc-
essing elements operating simultaneously (massive
parallelism) to achieve their speed. They exploit
the fact that the typical satellite image contains
millions of picture elements (pixels) that can gen-
erally be processed at the same time.

In December 1979, NASA Goddard awarded a con-
tract to Goodyear Aerospace to construct a massively
parallel processor (MPP) to be delivered in the first
quarter of 1982. The basic elements of the MPP
architecture were developed at NASA Goddard. This
paper presents the architecture of the MPP system.
The major components are shown in Figure 1. The
array unit (ARU) processes arrays of data at high
speed and is controlled by the array control unit
(ACU) , which also performs scalar arithmetic. The

*This work was partially funded by NASA Goddard
Space Flight Center under Contracts NAS 5-25392
and NAS 5-25942.

ARRA” “NIT (AR”,

I ARRAYCONTROL
UNIT IACUI II

. ..-_
‘ERFACE

- ‘/
IPOMU)

MAGNETIC
TAPE

DISK ALPHA.
NUMERIC

Figure 1 - Block Diagram of Massively Parallel
Processor (MPP)

program and data management unit (PDMU) controls
the overall flow of data and programs through the
system and handles certain ancillary tasks such as
program development and diagnostics. The PDMU-
ARlJ I/O registers buffer and reorder data between
the ARU , PDMU , and external (host) computer.

CH7494-4/80/0000-0768$00.75 0 19801EEE
174

ARRAY UNIT
Logically. the array unit (ARU) contains 16,384

processing elements (PE’s) organized as a 128 by 128
square. Physically, the ARU has an extra 128 by 4
rectangle of PE’s that is used to reconfigure the ARU
when a PE fault is detected. The PE’s are bit-serial
processors for efficiently processing operands of
any length. The basic clock rate is 10 megahertz.
With 16.384 PE’s operating in parallel, the ARU has
a very high processing speed (see Table I). Despite
the bit-serial nature of the PE’s, even the floating-
point speeds compare favorably with several fast
number crunchers,

TABLE I - SPEED OF TYPICAL OPERATIONS

Operations

Addition of arrays
8-bit integers (g-bit sum)
la-bit integers (13-bit sum)
32-bit floating-point numbers

Multiplication of arrays (element by
element)

8-bit integers (16-bit product)
12-bit integers (24-bit product)
32-bit floating-point numbers

Multiplication of array by scalar
8-bit integers (16-bit product)
Il-bit integers (24-bit product)
32-bit floating-point numbers

Speed
(MOPS)*

6553
4428
430

1861
910
216

2340
1260
373

* Million operations per second.

Routing Topology

Each PE in the 128 by 128 square communicates
with its nearest neighbor; up, down, right, and
left - the same routing topology used in ILLIAC IV
and some other array processors. Alternative rout-

ing topologies such as the flip network’ or one of
its equivalents2 were investigated. They have the
ability to shift data over many PE’s in one step and
allow data to be accessed in many different direc-

tions3. Certain paths in the alternative topologies
have long runs that complicate their layout and
limit their cycle rate. When the number of PE’s
interconnected is only 256 as in the STARAN* com-
puter, this is no problem: when 16,384 PE’s are
interconnected, it is a severe problem.

Most of the expected workload does not use the
routing flexibility of the alternative topologies. The
ability to access data in different directions is im-
portant when arrays of data are input and output;
it can be used to reorient the arrays between the
bit-plane format of the ARU and the pixel format
of the outside world.

These considerations lead to the conclusion that
the ARU should have a two-dimensional nearest-
neighbor routing topology such as ILLIAC IV since
it is easy to implement and matches the two-dimen-
sional nature of satellite imagery. The problem of
reformatting I IO data is best handled in I/O buffers
that may employ the alternative routing topologies.

Around the edges of the 128 by 128 array of
PE’s, the edges can be left open (e.

e’
3 row of

zeros can be entered along the le t edge when rout-
ing data to the right) or the opposite edges con-
netted. Cases were found where open edges were
preferred and other cases where connected edges
were preferred. It was decided to make edge-con-
nectivity a programmable function. A topology-
register in the array control unit defines the con-
nections between opposite edges of the PE array.
The top and bottom edges can either be connected
or left open. The connectivity between the left
and right edges has four states: open (no connec-
tion) ; cylindrical (connect the left PE of each row
to the right PE of the same row) ; open spiral (for
l<n<127, connect the left PE of row n to the right PE
of row n-l) ; and closed spiral (like the open spiral,
but also connect the left PE of row 0 to the right
PE of row 127). The spiral modes connect the
16,384 PE’s together in one long linear array.

Redundancy
The ARU includes some redundancy so that a

faulty PE can be bypassed. Redundancy can be
added to a two-dimensional array of PE’s by adding
an extra column (or row) of PE’s and inserting by-
pass gates in the routing network. When a faulty
PE is discovered, one disables the whole column
containing the faulty PE and joins the columns on
either side of it with the bypass gates.

The PE’s in the ARU are implemented with two-row
by four-column VLSI chips; thus, it is more conveni-
ent to add four redundant columns of PE’s and by-
pass four columns at a time. The PE array has I28
rows and 132 columns. It is divided into 33 groups,
with each group containing 128 rows and four col-
umns of PE’s. Each group has an independent group-
disable control line from the ACU. When a group iS
disabled, all its outputs are disabled and the groups
on either side of it are joined together with 128 by-
pass gates in the routing network.

When there is no faulty PE , an arbitrary group
is disabled so that the size of the logical array is al-
ways 128 by 128. Application programs are not awarc
of which group is disabled and need not be modified
when the disabled group is changed. They always
use the logical address of a PE to access PE-depend-
ent data. The logical address of a PE is a pair of
‘I-bit numbers, X and Y, showing its position in the
logical array of enabled PE’s. A simple routine exe-
cuted in 27 microseconds will load the memory of
each PE with its logical address. No attempt to pre-
serve PE data is made when a faulty PE is discovered
since the data in the faulty PE cannot be trusted.

*Trademark, Goodyear Aerospace Corporation,
Akron, Ohio.

17.5

Recovery is accomplished by restarting the appli-
cation program from the last checkpoint or from the
beginning.
Bit-Serial Processing

The elements in the arrays being processed have
a wide variety of lengths. A spectral band of an in-
put pixel may have a resolution of 6 to 12 bits. Inter-
mediate results can have any length from 6 to more
than 30 bits. Single-bit flag arrays are generated
when pixels are classified. Some computations may
be performed in floating-point. Thus, the PE’s
should be able to process operands of any length
efficiently.

Conventional computers typically use bit-parallel
arithmetic units with certain fixed-word lengths such
as 8, 16, or 32 bits. Operands of odd lengths are
extended to fit the standard word sizes of the ma-
chine. Some of the hardware in the memory and the
arithmetic unit is wasted storing and processing the
extensions.

Bit-serial processors process operands bit by
bit and can handle operands of any length without
any wasted hardware. Their slower speed can be
counteracted by using a multitude of them and proc-
essing many operands in parallel. Because of the
wide variety of operand lengths in the expected
workload, bit-serial processors are more efficient in
the use of hardware than bit-parallel processors.

Processing Elements

The initial MPP design had PE’s using downshift-

ing binary counters for arithmetic4. The PE design
was modified to use a full-adder and shift-register
combination for arithmetic. The modified design per-
forms the basic arithmetic operations faster. Each of
the 16.896 PE’s has 6 one-bit registers (A,B ,C ,G ,P,
and S) , a shift-register with a programmable length,
a random-access memory, a data-bus (D) , a full-
adder, and some combinatorial logic (see Figure 2).
The basic cycle time of the PE is 100 nanoseconds.

IN-2.6.10.14.
18.22.26. OR 301

DATA.BUS IDI 1

Figure 2 - One Processing Element

Logic and Routing. The P-register is used for
logic and routing operations. A logic operation com-
bines the state of the P-register and the state of
the data-bus (D) to form the new state of the P-
register. All 16 Boolean functions of the two vari-
ables, P and D , are implemented (P * D , PvD, Pf3D,
P*D, F, D, D, etc.). A routing operation shifts
the state of the P-register into the P-register of a
neighboring PE (up, down, right, or left).

Arithmetic. The full adder; shift register; and
registers A, B , and C are used for bit-serial arith-
metic operations. To add two operands, the bits of
one operand are put into the A-register, one at
a time, least-significant-bit (LSB) first; correspond-
ing bits of the other operand are put into the P-
register; the full adder adds the bits in A and P to
the carry bits in the C-register to form the sum and
carry bits; each carry bit is stored in C to be added
in the next cycle; and each sum bit is stored in B .
The sum formed in B can be stored in the random-
access memory and/or in the shift register. Two’s-
complement subtraction is performed by adding the
one’s-complement of the operand in P to the operand
in A and setting the initial carry bit in C to 1 in-
stead of 0.

Multiplication is a series of addition steps where
the partial product is recirculated through the shift
register and registers A and B. Appropriate multi-
ples of the multiplicand are formed in P and added
to the partial product as it recirculates. Division
is performed with a nonrestoring division algorithm.
The partial dividend is recirculated through the
shift register and registers A and B while the divisor
or its complement is formed in P and added to it.

Floating-point addition compares exponents ;
places the fraction of the operand with the least
exponent in the shift register; shifts it to the right
to align it with the other fraction; puts the sum of
the fractions in the shift register: and normalizes
the sum. Floating-point multiplication is a multi-
plication of the fractions, a normalization of the
product, and an addition of the exponents.

Masking. The G-register can hold a mask bit
that can control the activity of the PE. Unmasked
logic, routing, and arithmetic operations are per-
formed in all PE’s. Masked operations are Only per-
formed in those PE’s where the G-register equals 1.

Input/Output. The S-register is used to input
and output ARU data. While the PE’s are proces-
sing data in the random-access memories, columns
of input data are shifted into the left side of the
ARU (Figure 1) and through the S-registers (Fig-
ure 2) until a plane of 16,384 bits is loaded. The
input plane is then stored in the random-access
memories in one lOO-nanosecond cycle by interrupt-
ing the processing momentarily in all PE’s and mov-
ing the S-register values to the memory elements.
Planes of data are output by moving them from the
memory elements to the S-registers and then shift-
ing them out column by column through the right
side of the ARU. The shift rate is 10 megahertz;
thus, up to 160 megabytes per second can be
transferred through the ARU I/O ports. Proces-
sing is interrupted for 100 nanoseconds for each
bit plane of 16.384 bits transferred - less than
one percent of the time.

176

Storage. The random-access memory stores
1024 bits per PE. Standard RAM integrated cir-
cuits make it easy to expand storage as advances
occur in solid-state memory technology.

Parity error detection is used to find memory
faults. A parity bit is added to the eight data
bits of each 2 by 4 subarray of PE’s. Parity bits
are generated and stored for each memory write
cycle and checked when the memories are read.
A parity error sets an error flip-flop associated
with the 2 by 4 subarray. A tree ot logic elements
gives the ACU an inclusive-or of all error flip-flops
(after some delay). By operating the group-disable
control lines, the ACU can locate the group contain-
ing the error and disable it _

Sum-Or Tree. The data bus states of all 16,384
enabled PE’s are combined in a tree of inclusive-or
elements called the sum-or tree. The output of this
tree is fed to the ACU and used in certain opera-
tions such as finding the maximum or minimum value
of an array in the ARU .

Packaging

Standard 4 by 1024-bit RAM elements are used
for the PE memories. All other components of a 2
by 4 subarray of PE’s are packaged on a custom
VLSI CMOS/SOS chip. The VLSI chip also contains
the parity tree and the bypass gates for the sub-
array.

Each 8-l/2-inch by 14-inch printed circuit board
contains 192 PE’s in an 8 by 24 array. A board CWI-
tains 24 VLSI chips, 54 memory elements. and some
support circuitry. Sixteen boards make up an array
slice of 128 by 24 PE’s.

Five array slices (80 boards) make up the bulk
of the ARU (128 by 120 PE’s). The remaining 12
PE columns are packaged on 16 I /O-processor boards,
which also contain the topology switches, I/O
switches, and PDMU-ARU I/O registers. The 96
boards of the ARU are packaged in one cabinet (the
leftmost cabinet in Figure 3). Forced-air cooling is
used _

ARRAY CONTROL UNIT

Like the control units of other paraIle1 proces-
sors, the array control unit (ACU) performs scalar
arithmetic and controls the PE’s. It has three WC-
tions that operate in parallel (see Figure 4): PE
Control, I/O Control, and Main Control. PE Control
performs all array arithmetic of the application pro-
gram. I/O Control manages the flow of data in and
out of the ARU. Main Control performs all scalar
arithmetic of the application program. This arrange-
ment allows array arithmetic, scalar arithmetic, and
input /output to be overlapped for minimum execution
time.

Figure 3 - MPP System Configuration

177

PE PE

PDMU - CONTROL - CONTROL - ARU

MEMORY - UNIT

t

QUEUE 9
MAIN
CONTROL
UNIT

t
MAIN

PDMU - CONTROL
MEMORY

Figure 4 - Block Diagram of Array Control
Unit (ACU)

PE Control
PE Control generates all ARU control signals ex-

cept those associated with I/O. It contains a 64-bit
common register to hold scalars and eight 16-bit
index registers to hold the addresses of bit planes
in the PE memory elements, to count loop executions,
and to hold the index of a bit in the common register.
PE Control reads 64-bit-wide microinstructions from
PE Control memory. Most instructions are read and
executed in 100 nanoseconds. One instruction can
perform several PE operations, manipulate any num-
ber of index registers, and branch conditionally.
This reduces overhead significantly so that little,
if any, PE processing power is wasted.

PE Control memory contains a number of system
routines and user-written routines to operate on
arrays of data in the ARU. The routines include
both array-to-array and scalar-to-array arithmetic
operations. A queue between PE Control and Main
Control queues up to 7 calls to the PE Control
routines. Each call contains up to 8 initial index-
register values and up to 64 bits of scalar informa-
tion . Some routines extract scalar information from
the ARU (such as a maximum value) and return it
to Main Control.
I/O Control

I /O Control shifts the ARU S-registers, manages
the flow of information in and out of the ARU ports,
and interrupts PE Control momentarily to transfer
data between the S-registers and buffer areas in the
PE memory elements. Once initiated by Main Control
or the PDMU , I/O Control can chain through a num-
ber of I/O commands. It reads the commands from
Main Control memory.

Main Control

Main Control is a fast scalar processor. It reads
and executes the application program in the Main
Control memory. It performs all scalar arithmetic it-
self and places all array arithmetic operations on the
PE Control call queue. It contains 16 general-pur-
pose registers, three registers to control the ARU
group-disable lines, 13 registers associated with the
call queue, 12 registers to receive scalars from
PE Control, and four registers to monitor and control
the status of PE Control and I/O Control.

PROGRAM AND DATA MANAGEMENT UNIT

The program and data management unit (PDMU)
controls the overall flow of programs and data in the
system (Figure 1). Control is from an alphanumeric
terminal or from an external (host) computer. The
PDMU is a minicomputer (DEC PDP-11) with custom
interfaces to the ACU control memories and registers
and to the wide I/O ports of the ARU. The operating
system is DEC’s RSX-11M real-time multiprogramming
system.

The PDMU also executes the MPP program-
development software package. The package in-
cludes a PE control assembler to develop routines
for PE Control; a main assembler to develop appli-
cation programs executing in Main Control; a linker
to form load modules for the ACU; and a control
and debug module that loads programs into the
ACU, controls their execution, and facilitates de-
bugging.

PDMU-ARU I/O REGISTERS

The PDMU-ARU I/O registers reside between
the wide I/O ports of the ARU and the PDMU. They
also have a port to an external (host) computer.
Besides acting as buffers for ARU data being input
and output, the registers reorder arrays of data.

Satellite imagery is normally stored in pixel
order in the PDMU and other conventional computers.
That is, line 1 pixel 1 followed by line 1 pixel 2,
etc., followed by the pixels of line 2, line 3, etc.
The imagery might be band-interleaved (all spectral
bands of a pixel stored together) or band-sequen-
tial (band 1 of all pixels followed by band 2 of all
pixels, etc. 1.

Arrays of data are transferred through the
ARU ports in bit-sequential order. That is, the
most- (or least-) significant bit of 16,384 elements
followed by the next bit of 16,384 elements, etc.
Reordering is required to fit the normal order of
satellite imagery in the PDMU or the host. Thus,
the PDMU-ARU I/O registers are given a reorder-
ing capability.

The registers use a common 21g bit multi-
dimensional-access (MDA) memory’ to buffer and
reorder arrays of data. Each of the three memory
ports (ARU, PDMU, and external computer) can
read and write data in the MDA memory in a differ-
erent direction. Data arrays up to 2 19 bits in size
can be reordered by writing them into the MDA
memory in one direction and reading them out in a
different direction.

178

The ARU ports transfer data to and from the
I/O registers at a 160-megabyte-per-second rate
(128 bits every 100 nanoseconds). The external
computer ports transfer data at rates up to six
megabytes per second. The PDMU transfer rate is
limited by the PCMU peripherals. The fastest
peripheral is the disk system, which has a 806-
kilobyte-per-second rate.

EXTERNAL COMPUTERINTERFACE

The MPP, to be delivered to NASA, will use a
DEC VAX-11/780 computer as a host. The inter-
face to the host has two links: a high-speed data
link and a control link.

The high-speed data link connects the PDMU-
ARU I/O registers of the MPP to a DR-780 high-
speed user interface of the VAX-111780. Data can
be transferred at the rate of the DR-780 (six mega-
bytes per second).

The control link is DEC’s standard DECNET link
between a PDP-11 and a VAX-11/780. The DECNET
hardware and software let VAX users transfer pro-
grams and program requests to the MPP.

CONCLUSION

The massively parallel processor is a ultra high-
speed processor designed to perform a variety of
image processing tasks on satellite imagery. It may
be used in other applications where large arrays of
data must be processed quickly. The MPP uses a
large number of simple PE’s to process arrays of
data in a bit-plane or bit-slice mode. A number of
papers in the literature describe other systems

using the same processing mode S-10 .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

REFERENCES

Batcher. K.E.: The Flip Network in Staran;
1976 International Conference on Parallel
Processing, pp. 65-71.
Siegel, H.J., and Smith, S .D. : Study of
Multistage SIMD Interconnection Networks;
Fifth Annual Symposium on Computer Archi-
tecture, pp. 223-229, April 1978.
Batcher,-K.E.: The Multi-Dimensional-Access
Memory in STARAN: IEEE Transactions on
Computers, vol. C-26, pp. 174-177, February
1977.
Fung, L-W: A Massively Parallel Processing
Computer; High-Speed Computer and Algorithm
Organization (D.J. Kuck, et al, ed.), pp. 203-
204, Academic Press, 1977.
Slotnick, D .L. ; Borck, W .C . ; and McReynolds ,
R.C. : The SOLOMON Computer; 1962 Fall
Joint Computer Conference, pp. 97- 167.
Shooman. W.: Orthogonal Processing; Parallel
Processor Systems, Technologies, and Applica-
tions (L.C. Hobbs, et al. ed.1 pp. 297-308,
Spartan Books, 1970.
Handler, W. : A Unified Associative and Von-
Neumann Processor - EGPP and EGPP Array;
Lecture Notes in Computer Science, vol. 24 -
Parallel Processing, pp. 97- 99, Springer-Verlag ,
1975.
Reddaway, S .F. : DAP - A Distributed Array
Processor: First Annual Svmposlum on Computer
Architecture, December 1973:
Flanders. P.M.; Hunt, D.J.; Reddaway, S.F.;
and Parkinson, D . : Efficient High-Speed Com-
puting with the Distributed Array ProCeSSOr:
High-Speed Computer and Algorithm Organiza-
tion (D.J. Kuck. et al, ed.),pp. 113-128,
Academic Press, 1977.
Batcher, K.E.: STARAN Parallel Processor
System Hardware; 1974 National Computer Con-
ference, AFIPS Conference Proceedings, vol.
43. pp. 405-410.

179

