
DAP--A DISTRIBUTED ARRAY PROCESSOR
Dr. S. F. R e d d a w a y

Language and Processor Department
Research and Advanced Development Centre

International Computers Limited

ABSTRACT

An array of very simple processing elements is des-
cribed each with a local semiconductor store. The
array may also be used as main stor~e.

Bit-organisation gives great flexibility, including the
minimisation of word length. Use of MSI and LSI is
helped by the simplicity of the serial design. Using
S S-bit fixed point, the theoretical performance of a
72 x 128 array is about 108 multiplications or 109
additions per second. Comparisons are made with other
architectumes.

Meteorology is considered as an application. It is
attractive to have the whole problem in the array
storage.

I. INTRODUCTION

This paper describes a design study of an array of
elements that can be used either as a "Single-
Instruction, Multiple-Data stream" (SIMD) processor or
as a store. Architectural features of interest are:
(a) the use of serial arithmetic to simplify processor
logic and optimise store utilisation; (b) an attempt
to avoid I/0 bottlenecks by mapping complete problems
into the array, without relying on overlay techniques;
(c) provision for using all or part of the array as a
store when not performing its specialised processing
f~mctions; (d) the close integration of storage and
logic.

The main attractions of aaTay-type SIMD structures are:
(a) high absolute performance on certain problems of
importance; (b) high performance/cost, partly result-
ing from using common control logic.

Several examples of this type of architectu_e have been
proposed (I-8) and applications have been suggested in,
for example, meteorology, plasma physics and linear
programming. Most struct~es have a single control
unit that broadcasts instructions to a regular azTay of
processing elements (PEs) each with individual storage
and an arithmetic unit (AU).

Flynn (2) points out four factors that degrade the
performance from the theoretical figure given by
"Number of PEs times PE performance": (a) Each PE
has direct access only to a limited region of store,
and excess time may be taken accessing other regions;
(b) Mapping the problem onto the array may leave some
PEs unused; (c) Owing to overheads in preparing in-
strnctions for the array, there msyv be times when the
whole SaTay is idle; (d) While dealing with singular-
ities or boun~ry conditions the majority of PEs are
idle.

These factors are acknowledged to reduce the applica-
bility of such an a r r a y . I n the present design att-
empts have been made to mitigate their effect, but the
over-riMing consideration has been to simplify the PE
design; this has been done to the extent that the

theoretical performance is very high, in spite of the
AU cost being small compared with that of the storage.
In effect, therefore, the store is being adapted to an
s~Tay processing f~mction. This may be contrasted
with attempts to adapt the processor to array operations
(e.g. CDC STAR).

A dispersed system, i.e. one with many PEs each with
local memory, has potential cost and speed advantages
deriving from: (a) reduced "cable" delays; (b) re-
duced address transforming and checking; (c) faster
actual access; (d) simplified data routing and priority
logic •

A number of potential PE designs of varying parallelism
have been considered for building aaTays of the same
theoretical performance, with the following general
results.

The gate cmmt varies with the degree of internal PE
parallelism. A purely serial PE has considerable
advantages particuls~rly for low precision work.

Serial PEs have fewer connections at all packaging
levels.

The extreme simplicity of serial PEs permits the very
effective use of batch fabrication and testing techniques
and keeps hardware development rapid and cheap. The
small number of circuit and board types helps develop-
ment, production, spares holding and maintenance.

Serial designs have exceptional factional flexibility;
very few decisions are built into the hardware. However,
fully indexed addressing is expensive.

The design is somewhat similar to SOLOMON I (8); the
main differences stem from the exploitation of modern
technology.

2. TH~ARRAY

2.1 CONFIGURATION

0

I
COLUMN

I SELECT

I
I
I
I I

HGURE J. M.C.U. DIAGRAM

ROW DATA LINES

NCU
REGISTERS

ARRAY
, WIOTHo

t ~ i STORE HIGHWAY I t (PARENT MACHINE)

I INDEX

INSTRUCTION BUFFER
TCN ~

CCA.UMN
ADDRESS

61

Figure] is an overall configuration diagram. The
rectangular array has an essentially two dimensional
nearest neighbour connectivity, and has one dimension
matched to the store highway of a conventional computer
(the "parent" machine). This connection provides the
route for loading both data and array instructions into
the array storage for azTay processing; it also permits
the parent machine to use the array storage as its own
main storage. Input/output is done by the parent
machine.

The Main Control Unit (MCU) has: (a) a conventional
instruction fetching arrangement; (b) an instruction
buffer whose purpose will be described later; and (c)
a set of registers, many of which can be matched to the
array by row or colum for a variety of purposes, one
of which is indexing. For sizable arrays the MCU is
a very small fraction of the total hardware.

After loading, the bits of a word are spread along a
column of PEs, and this method of holding data is termed
Main Store mode. Another method, termed Array mode,
stores all the bits of a word in a single PE. This is
more attractive for processing large arrays, but requires
initial and final transformation of the data from and
to Main Store mode; this is done inside the array.

2.2 THE PE

FIGURE 2. PROCESSING ~,m~T

NEIG HBOUR$ ($)

COLUHN nESP0NSt 0THER TO NEICHBOU~S

nOW RfSPONSE

Figure 2 is a PE diagram. The registers are all one-
bit; P and Q are for operands, C is the carry register,
AS and A2 are activity bits that can prevent writing to

62

store, and BI and B2 can supply 2 address bits. The
routing multiplexor can select a bit from the PE's own
store, or from a neighbour's store, for writing to a
register; selecting zero and controlling its inversion
permits data input from outside the array (for example,
an MCU register). The sum, carry, data input or con-
tents of Q can be output from the logic, usually to the
store. The store contents can be output externally
(to, for example, an MCU register) via the gates at the
bottom of Figure 2; the bits output can be either from
a selected column of PEs, or the logical AND of rows
(or columns) of PEs. One use for the latter is for a
test over all PEs.

The fifth "neighbour" connection is to the PE half a
row away in the same row; this permits both faster
mass movement of data around the array, and a "2~D"
PE geometry. Bit patterns in one or two MCU registers
can be applied to the "inversion" inputs to produce a
veto selective by rows and/or columns on writing to PE
stores. Fig~e 2 shows 4 address bits capable of
being selected by row or column; what indexing
facilities should be provided is still an area of
debate.

Some differences from the PE in (7) are: la) more
row/colunm symmetry; (b) a latch feature (shown on
the P register) for associative comparisons; (c) data
can be shifted directly between PEs without using the
store; I~ I inputdatacanbeloadeddirectlyinto
store; there is a ripple carry path between
PEs for Main Store mode arithmetic; (f) the bipolar
store is now4K instead of 2K.

It is intended to package 2 PEs minus their stores and
routing multiplexors in one 24 pin integrated circuit.

2.5 EDGE CONNECTIONS

For instructions that involve neighbours, it is the
array geometry that determines what happens at the
array edges. Rows or columns may be: (a) cyclic,
with their ends connected together; (b) linear, with
a continuation onto a neighbcuring line; (o) as (b)
but with the extreme ends connected; or (d) plane,
with external data applied at the relevant edge. In
addition, a row may be considered in two halves (2~D
geometry). There are thus 32 geometries, and they are
set by program.

2.4 CONSTRUCTION

A board would contain a 6 x 4 PE section with 4K bits/
PE; there would be 137 external connections and 173
ICs, 96 of them for storage. The array can be viewed
as doing processing in the store, and costs only about
25°% more than ordinary storage made out of the same
technology. A platter would contain a 36 x 16 PE
section; the number 36, and multiples of it, match
standard store highways. "Folding" of the array
makes connections between the extreme edges short.

The economy obtained by the dense packing of the
integrated circuits is the result of the favourable
marriage of space-limited (or power-dissipation
limited) storage and pin-limited logic.

2.5 TIMING

Because most micro-instructions do not involve a
response from the array, the equalisation, rather than
minimisation, of delays is important. Even with a
comparatively slow logic technologyt the micro-
instruction rate should be about 5-6 MHz; the storage

element delays are the biggest factor, and this illus-
trates how the array can exploit bipolar store speeds,
tmlike a large conventional machine.

2.6 FUNCTIONS

In (7) the basis of the micro-prograN~ngnotation is
given and it is shown how Array mode fixed and floating
point instructions are built-up. Bit organisation
means that only necessary work need be done; for
example, multiplication only needs to calculate a
single length result.

Code for execution must be compiled down to the one-bit
micro-instructions, except that for working regularly
along the bits of words a short loop can be constructed.
This loop is held in the instruction buffer, so that no
further instruction fetching from the array storage is
needed during execution of the loop. This feature
reduces the instruction fetching overhead from I0~% to
about 2~%. Subroutine construction will be possible.

2.7 PERFORMANCE

For array mode, fractional fixed point multiplication
takes about

n (3n + 13)
2

micro-instructions where n is the word length; fixed
~oint addition takes little more than 3n micro-
instructions. Floating point takes a little longer
for multiplication, and considerably longer for
addition (see (7)). 20-bit multiplication takes
about 730 micro-instructions plus about 160 cycles for
micro-instruction fetching, and at 5~ MHz would take
about 160~sec; 20-bit addition takes about 12 ~sec.
Multiplication of an array by a common number can be
about four times faster.

Main store mode arithmetic is faster than Array mode
for smaller arrays. In terms of absolute speed,
addition is about 11 times faster and multiplication,
using a carry save technique ending with a ripple carry,
is about six times faster for 20 bit precision (the
latter factor increases with the precision).

FIGURE ~. D.A.P. PERFORMANCE

iooo

.,,,o @. ,=,)
(zo-~'r WOP.O$) 4 A . 4 A ~ ARR'AY HOOE

~ / / / . . M A I N STORE kOO4[i

VECTOR MACHINE

/ /

I , P'ARENT IRACI41N
/ I

I I O I O O IOOO IO 4 io $ i o 6

PARALLEL DATA STREAMS

The user has three modes of workingat his disposal:
the parent machine for scalar working, Main Store mode
for small arrays andArray mode for large arrays.
Figure 3 shows roughly what is possible in the three
modes; the useful processing rate in Million Instruc-
tions (or, more accurately, results) Per Second (HIPS)

is plotted against the number of parallel data streams
for the type of computing indicated and a 9200 PE array.
Only the top ends of the sloping lines depend on array
size. The dashed line shows the similar graph for a
powerful vector machine (there are many other differ-
ences between the two types of machine).

The overall performance depends on the application and
programmer skill.

2.8 A COMPARISON

ILLIAC IV is a well known machine, so a brief com-
parison is attempted withArray mode, assuming the
problem parallelism is sufficient to occupy either
machine. Many differences are not easily quantifiable,
but as a starting point the main assumptions for a
numerical comparison are given in Figure 4. The
first four lines give the instruction mix; B is the
number of bits precision for the serial design, which
has no separate store acesses because all functions are
store-to-store. P is the clock period (180 nsec).
2~%is subtracted from the ILLIAC IV totals to allow
for instruction overlap.

FIGURE 4.

INSTRUCTION MIX AND TIMINGS:

DESIGN COMPARISON
ILLIAC IV ASSUMPTIONS

I ADD/SUBTRACT
I MULTIPLY

2 STORE ACCESSESS

I MODE SETTING (EI'c~

TOTAL

TOTAL - 20°/o

MANTISSA

EXPONENT
"USEFUL" EXPONENT

SERIAL
DESIGN

(2 +3e) r
(4B+,.SEZ)P

O

4P

(6+7B + I. 5B 2) P

/ P E. LOGIC
ILLIAC ~ ~-12OOO FAST ECL GATES
SERIAL DESIGN "~.,'60 TTL GATES
I FAST ECL = 2TTL GATES
PATIO = 2OO x 2 " 4 0 0

(

SINGLE
PRECISION

O,125

0 -25

0"325

O'OS

0-75

O '6

25

7
4

ILLIAC " ~

DOUBLE I TRIPLE ~
PRECISION I PRECISION

0.25 O.5 ? p , * c
0.$ 2.0? p,ec

0 ' 6 5 I -O? ,use¢

O'OS 0 . 0 5 u 0tc

I "45 3 ' 557 ~usec

I" 16 2"8? ,usec

4q 73 BITS

is (2~) BiTS
b 8 BITS

Figure 5 compares the hardware required to build an
array of given performance for words of a particular
precision. Logic and storage have equal weight;
Figure 4 gives the gates/PE ratio and the storage
comparison involves an estimate of the unnecessary
bits in the ILLIAC IV word. The graph would favour
ILLIAC IV only for working exclusivel,y with 46-49 bit
precision. At low precisions serial PEs have a very
big advantage.

Such numerical comparisons are of only limited value.
For example, the vertical scale of Figure 5 would be
multiplied by about 4 if integrated circuit count were
used as a hardware measure. Other factors such as
hardware simplicity and repetition, pin counts and
functional flexibility are equally important.

2.9 EXAMPLE OF STORAGE ECONOMY

For problems with large amounts of data, storage
economy is important, particularly if it permits
storing the complete problem in the array. The user
can apply various tricks. As an example, consider
three dimensional field problems. In olxler to prevent
physical "truncation" errors, programs are designed so

63

4 . 0

3 - 5

3 "0

2.5

2.0
LOGIC

+
STORAGE

I.S

I O

FIGURE • COMPARISON WITH ILLIAC IV

RLIAC ~ VS. SERIAL DESIGN
(FOR SAME PERFORMANCE)

0 - 5

' 2'0 O IO

F~

J "x

i

l
| l | !

5 0 4 0 550 6 0

PRECISION (BITS)

that differences between neighbouring variables require
fewer significant bits than the variables themselves.
If variables have to be held simultaneously for two
time steps, then, for example, they can be grouped into
sets of 16 nearest neighbours in space and time (2 x 2
x 2 x 2), and held as follows: (a) a short floating
point number close to the maximum of the group (maybe
a 4-bit mantissa and 3-bit exponent); and (b) 16
differences in block floating point (maybe 12-bit
mantissas and a common 2-bit block exponent). This
results in 12.6 bits/variable and is roughly equivalent
to floating point with a 15-bit mantissa and 3-bit
exponent, i.e. a gain of nearly 50~; other machines
require floating point variables to occupy up to 64
bits, i.e. up to 5 times more.

3. METEOROLOGY AS AN APPLICATION

This is considered more fully in (7)- Meteorology
includes both simulation experiments and forecasting,
and as simulation programs are central to both, atten-
tion wiI1 be confined to them. (Forecasting also
uses analysis and initialisation programs to assimilate
the "real" data). For simulation programs, the fre-
quency of add/subtract and multiply instmuctions is
roughly equal, and divide is much less frequent. For
DAP, multiplication takes much longer than addition,
so the number of multiplications and their timing give
a first approximation to the speed of a program.

The table gives a rough guide to parameters in use today
and those that should be aimed at.

Using the 18 bit(fixed point) precision suggested in
Section 3.3, each PE can perform a multiplication in
about 140~sec. Section 3.2 discusses the efficiency
of PEusage; 50~might be a reasonable figure. Thus
about 8000 PEs are adequate to perform the 2.5 x 107
multiplications per second indicated above.

TABLE

Number of
Vertical
Columns of
Grid Points

Number of
vertical
levels

Total number
of variables

Time step

Number of
time steps

Multiplications
per column per
time step

Multiplications/
sec.

Speed-up over
real time

Present

Forecast
Programs

3000

10

2 x 105

2 rain.

1000

1000

1.2 x 106

5o-100

Global
Research
Programs

I0 000

5

2 . 1 x 10 5

5 rain.

10 000

500

1.2 x 106

50-1 O0

Next stage

x4

x2

x8 (1.6 x10 6)

+2

x3

x 2.5

x20 (2.5 x 107

50-100

3-1 STORAGE

It may be tempting to use a backing store for big
problems; however, the smaller the array stor~e the
larger is the channel capacity required. In (7) an
example was studied of a problem using explicit
integration which had I. 5 x 10 ° variables of avera~
length 20 bits, and was processed on an 8200 PE array
with an I/O channel of 107 bits/sec. Three formula-
tions of the problem had the following trade-of f s:
(a) 1850 bits/PE and speed degBded by a factor of
2•5, (b) 2800 bits/PE and speed degraded by I .3, and
(c) 4600 bits/PE, the complete problem in the array
and no degradation. A similar problem using implicit
methods would have its speed degraded by an order of
magnitude if a backing store was used.

This sort of problem needs about 5-10 x 107 bits of
storage. The falling cost of semi-conductor storage
makes this ammmt of array storage feasible, and the
simplicity and reliability of a unified semi-conductor
system makes it attractive. Partly for these reasons,
the array has more resources devoted to storage than
to logic.

3- 2 PAPA T,T,"~T,T~M

Efficiency, defined as the fraction of time a PE is
active, depends on programmer skill as well as the
problem. Numerical procedures used at present have
usually been devised with serial machines in mind,
and sometimes a slightly different procedure may be
much more efficient•

Explicit methods for the "basic" meteorological
equations axe efficient. Boundaries do not have much
effect because it is usually a case of omitting things.
"Secondary" effects may cause efficiency to drop. The
computation is different if the air is saturated.

64

Convection may require the checking of neighbouring
vertical layers for stability, followed by a relaxation
process. Study indicates that these effects need not
have a major effect on the overall efficiency.

Once various conditions have been established "branch-
ing" by means of activity bits is very rapid, and can
be done frequently in order to improve parallelism.
(A conditional branch in a conventional program loop,
or selection in a vector machine, are slow by comparison

Implicit methods involve either ADI (alternating direc-
tion implicit) or rela~tion methods; the former are
not particularly efficient but the latter are.

There seem to be 4 types of grid in use: (a) rect-
angular for fairly local forecasts; (b) octagonal in
overall shape (rectangular neighbour cormection) for
the northern hemisphere; (c) cylindrical on a global
latitude-longitude basis; (d) as (c) except that the
number of points on a line of latitude is reduced as
the poles are approached. I~ I and (c)can fit a rect-
angular PE array. (b) and would waste some of the
PEs. (c) has reduced efficiency because a smoothing
process is applied more times near the poles; this can
be viewed as a trade-off for the wasted PEs of (d).

3.3 PRECISION ANDNUMBERREPRES~TATION

Precision costs time and storage space, so that big
problems should use only the minimum consistent with
accumulated round-off ezTor being small compared with
other errors. Different v~iables can use different
number representations and precisions. Knowledge of
requirements is only patchy, but should improve; the
pay-off, compared with fairly cautious starting schemes,
night be a factor of about 1.5 in stor~e and 2 in
speed.

Meteorology is largely concerned with absolute rather
than relative accttracy, and the max_imum possible values
of variables are well understood; this points to either
fractional fixed point or a simple floating point.
Block-floating of arrays (9) can also be implemented
efficiently.

An example of possible economy in space and speed
occurs in explicit integration schemes; the increments
to variables require considerably less precision than
the full variables.

Careful choice of rounding method in order to avoid bias
can also lead to economy (7).

A reasonable estimate of the average precision required
for fractional fixed point variables might be 18 bits
and rather less for the mantissa of floating point
variables.

4. 0THERAPPLICATIONS

An algorithm to solve the two dimensional Poisson's
equation was studied. It used a Fast Fourier Trans-
form technique, but the extensive data shuffling that
this involved occupied only 20-25% of the time. There
was also reduced parallelism in places, and a typical
PE was idle about 50°% of the time.. On a 72 x 64 PE
array, a 256 x 256 mesh was estimated to take 50 msec
for 20-bit numbers; this compares very favourably with
conventional machines. An interesting aspect is that
the main array is held in ArBy mode and certain row and
coltmm features are dealt with in I4~in Store mode; Main
Store mode vectors s~re combined with the array elements
in single arithmetic operations.

65

For the arBy to be useful, problems must fulfil
three conditions: (a) Processing, as opposed to I/O,
must be important; (b) Much of the problem must be
programmed with parallel and identical operations
(these may, however, be selective); (c) Excessive
time should not be spent shuffling data rotmd the
array. (In some cases this means the data should
be fairly regular).

These requirements are not very severe, and the biggest
barrier to widespread use is likely to be in devising
an acceptable progT~m{ng ls~iguage. (In spite of
many problems being naturally parallel, many users
are indoctrinated by sequential thinking).

Some applications for array processors are discussed
in (5). Further applications are suggested by the
fact that the array can be used as an "associative
processor"; examples night be air traffic control,
graphics processing and symbol processing. Associative
information retrieval can look attractive over quite a
wide range of pa/ametere; with the associative latch,
each PE can scan I bit every nicro-instruction, and so
10 000 PEs can scan 5 x 1010 bits/second.

The user has the freedom to optimise and experiment
from the bit level upwards; this may help him under-
stand his real computing requirements. The array is
not arithmetic biased, and the ftmctional flexibility
permits functions to be tailored for all sorts of
purposes. The hardware simplicity permits parameters
such as the number of bits/PE and the type of storage
to be varied easily; for example, a slower, cheaper
M0S version would extend the range of applications
considerably. The array modularity (almost like
stor~e modularity) means that sizes from 500 to
30 000 PEs are reasonable.

ACKNOWLEDG~TS

The author would like to thank the Directors of ICL
for permission to publish and J.K. Iliffe for his
support and for originating many of the ideas. The
contribution of A.W. Walton is also gratefully
acknowledged.

REFERENCES

I. Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J.,
Slotnick, D.L., and Stokes, R.A. "The ILLIAC IV
pC.OmT~4ter" ,]~:~:~: Transaction on Computers, C-17,

1968).
2. Flynn, M.J., "Some Computer Organisations and
their Effectiveness", IE~ Transactions on Computers,
C-21, p. 948 (1972).
3. Goodyear Aerospace "STAP, AN - A New Way o f Think-
iI~97"" A Goodyear Aerospace brochure, Akron, Ohio

1).
4- Huttenhoff, J.H., and Shively, R.R. "Arithmetic
Unit of a Computin~Element in a Global T Highly
Parallel Computer", IEEE Transactions on Computers,
C-18, p. 695 (1969).
5. Kuck, D.J. "ILLIAC IV Software and Application
Progr~mm1~Ig", IEEE Transactions on Computers, C-17,
p. 758 (1968).
6. Murtha, J.C., "Highly Parallel Info~nation
Processing Systems" in "Advances in Computers". Vol.7,
(1966).
7. ~eddaway, S.F., "An ElementaryArr~withProcess-
in, and Storage Capabilities", International Workshop
on Computer Architecture, Grenoble, Jtme 1973.

8. Slotnick, D.L., Borck, W.C., and McReynolds, R.C.,
"The Solomon Computer", Fall Joint Computer Conference
1962, p. 97.

9. Wilkinson, J.H., "Rounding Errors in Algebraic
Processes", H.M.S.0. London (1963).

