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ABSTRACT 

An array of very simple processing elements is des- 
cribed each with a local semiconductor store. The 
array may also be used as main stor~e. 

Bit-organisation gives great flexibility, including the 
minimisation of word length. Use of MSI and LSI is 
helped by the simplicity of the serial design. Using 
S S-bit fixed point, the theoretical performance of a 
72 x 128 array is about 108 multiplications or 109 
additions per second. Comparisons are made with other 
architectumes. 

Meteorology is considered as an application. It is 
attractive to have the whole problem in the array 
storage. 

I. INTRODUCTION 

This paper describes a design study of an array of 
elements that can be used either as a "Single- 
Instruction, Multiple-Data stream" (SIMD) processor or 
as a store. Architectural features of interest are: 
(a) the use of serial arithmetic to simplify processor 
logic and optimise store utilisation; (b) an attempt 
to avoid I/0 bottlenecks by mapping complete problems 
into the array, without relying on overlay techniques; 
(c) provision for using all or part of the array as a 
store when not performing its specialised processing 
f~mctions; (d) the close integration of storage and 
logic. 

The main attractions of aaTay-type SIMD structures are: 
(a) high absolute performance on certain problems of 
importance; (b) high performance/cost, partly result- 
ing from using common control logic. 

Several examples of this type of architectu_e have been 
proposed (I-8) and applications have been suggested in, 
for example, meteorology, plasma physics and linear 
programming. Most struct~es have a single control 
unit that broadcasts instructions to a regular azTay of 
processing elements (PEs) each with individual storage 
and an arithmetic unit (AU). 

Flynn (2) points out four factors that degrade the 
performance from the theoretical figure given by 
"Number of PEs times PE performance": (a) Each PE 
has direct access only to a limited region of store, 
and excess time may be taken accessing other regions; 
(b) Mapping the problem onto the array may leave some 
PEs unused; (c) Owing to overheads in preparing in- 
strnctions for the array, there msyv be times when the 
whole SaTay is idle; (d) While dealing with singular- 
ities or boun~ry conditions the majority of PEs are 
idle. 

These factors are acknowledged to reduce the applica- 
bility of such an a r r a y .  I n  the present design att- 
empts have been made to mitigate their effect, but the 
over-riMing consideration has been to simplify the PE 
design; this has been done to the extent that the 

theoretical performance is very high, in spite of the 
AU cost being small compared with that of the storage. 
In effect, therefore, the store is being adapted to an 
s~Tay processing f~mction. This may be contrasted 
with attempts to adapt the processor to array operations 
(e.g. CDC STAR). 

A dispersed system, i.e. one with many PEs each with 
local memory, has potential cost and speed advantages 
deriving from: (a) reduced "cable" delays; (b) re- 
duced address transforming and checking; (c) faster 
actual access; (d) simplified data routing and priority 
logic • 

A number of potential PE designs of varying parallelism 
have been considered for building aaTays of the same 
theoretical performance, with the following general 
results. 

The gate cmmt varies with the degree of internal PE 
parallelism. A purely serial PE has considerable 
advantages particuls~rly for low precision work. 

Serial PEs have fewer connections at all packaging 
levels. 

The extreme simplicity of serial PEs permits the very 
effective use of batch fabrication and testing techniques 
and keeps hardware development rapid and cheap. The 
small number of circuit and board types helps develop- 
ment, production, spares holding and maintenance. 

Serial designs have exceptional factional flexibility; 
very few decisions are built into the hardware. However, 
fully indexed addressing is expensive. 

The design is somewhat similar to SOLOMON I (8); the 
main differences stem from the exploitation of modern 
technology. 

2. TH~ARRAY 

2.1 CONFIGURATION 
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Figure ] is an overall configuration diagram. The 
rectangular array has an essentially two dimensional 
nearest neighbour connectivity, and has one dimension 
matched to the store highway of a conventional computer 
(the "parent" machine). This connection provides the 
route for loading both data and array instructions into 
the array storage for azTay processing; it also permits 
the parent machine to use the array storage as its own 
main storage. Input/output is done by the parent 
machine. 

The Main Control Unit (MCU) has: (a) a conventional 
instruction fetching arrangement; (b) an instruction 
buffer whose purpose will be described later; and (c) 
a set of registers, many of which can be matched to the 
array by row or colum for a variety of purposes, one 
of which is indexing. For sizable arrays the MCU is 
a very small fraction of the total hardware. 

After loading, the bits of a word are spread along a 
column of PEs, and this method of holding data is termed 
Main Store mode. Another method, termed Array mode, 
stores all the bits of a word in a single PE. This is 
more attractive for processing large arrays, but requires 
initial and final transformation of the data from and 
to Main Store mode; this is done inside the array. 

2.2 THE PE 

FIGURE 2. PROCESSING ~,m~T 

NEIG HBOUR$ ($) 

COLUHN nESP0NSt 0THER TO NEICHBOU~S 

nOW RfSPONSE 

Figure 2 is a PE diagram. The registers are all one- 
bit; P and Q are for operands, C is the carry register, 
AS and A2 are activity bits that can prevent writing to 
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store, and BI and B2 can supply 2 address bits. The 
routing multiplexor can select a bit from the PE's own 
store, or from a neighbour's store, for writing to a 
register; selecting zero and controlling its inversion 
permits data input from outside the array (for example, 
an MCU register). The sum, carry, data input or con- 
tents of Q can be output from the logic, usually to the 
store. The store contents can be output externally 
(to, for example, an MCU register) via the gates at the 
bottom of Figure 2; the bits output can be either from 
a selected column of PEs, or the logical AND of rows 
(or columns) of PEs. One use for the latter is for a 
test over all PEs. 

The fifth "neighbour" connection is to the PE half a 
row away in the same row; this permits both faster 
mass movement of data around the array, and a "2~D" 
PE geometry. Bit patterns in one or two MCU registers 
can be applied to the "inversion" inputs to produce a 
veto selective by rows and/or columns on writing to PE 
stores. Fig~e 2 shows 4 address bits capable of 
being selected by row or column; what indexing 
facilities should be provided is still an area of 
debate. 

Some differences from the PE in (7) are: la) more 
row/colunm symmetry; (b) a latch feature (shown on 
the P register) for associative comparisons; (c) data 
can be shifted directly between PEs without using the 
store; I~ I inputdatacanbeloadeddirectlyinto 
store; there is a ripple carry path between 
PEs for Main Store mode arithmetic; (f) the bipolar 
store is now4K instead of 2K. 

It is intended to package 2 PEs minus their stores and 
routing multiplexors in one 24 pin integrated circuit. 

2.5 EDGE CONNECTIONS 

For instructions that involve neighbours, it is the 
array geometry that determines what happens at the 
array edges. Rows or columns may be: (a) cyclic, 
with their ends connected together; (b) linear, with 
a continuation onto a neighbcuring line; (o) as (b) 
but with the extreme ends connected; or (d) plane, 
with external data applied at the relevant edge. In 
addition, a row may be considered in two halves (2~D 
geometry). There are thus 32 geometries, and they are 
set by program. 

2.4 CONSTRUCTION 

A board would contain a 6 x 4 PE section with 4K bits/ 
PE; there would be 137 external connections and 173 
ICs, 96 of them for storage. The array can be viewed 
as doing processing in the store, and costs only about 
25°% more than ordinary storage made out of the same 
technology. A platter would contain a 36 x 16 PE 
section; the number 36, and multiples of it, match 
standard store highways. "Folding" of the array 
makes connections between the extreme edges short. 

The economy obtained by the dense packing of the 
integrated circuits is the result of the favourable 
marriage of space-limited (or power-dissipation 
limited) storage and pin-limited logic. 

2.5 TIMING 

Because most micro-instructions do not involve a 
response from the array, the equalisation, rather than 
minimisation, of delays is important. Even with a 
comparatively slow logic technologyt the micro- 
instruction rate should be about 5-6 MHz; the storage 



element delays are the biggest factor, and this illus- 
trates how the array can exploit bipolar store speeds, 
tmlike a large conventional machine. 

2.6 FUNCTIONS 

In (7) the basis of the micro-prograN~ngnotation is 
given and it is shown how Array mode fixed and floating 
point instructions are built-up. Bit organisation 
means that only necessary work need be done; for 
example, multiplication only needs to calculate a 
single length result. 

Code for execution must be compiled down to the one-bit 
micro-instructions, except that for working regularly 
along the bits of words a short loop can be constructed. 
This loop is held in the instruction buffer, so that no 
further instruction fetching from the array storage is 
needed during execution of the loop. This feature 
reduces the instruction fetching overhead from I0~% to 
about 2~%. Subroutine construction will be possible. 

2.7 PERFORMANCE 

For array mode, fractional fixed point multiplication 
takes about 

n (3n + 13) 
2 

micro-instructions where n is the word length; fixed 
~oint addition takes little more than 3n micro- 
instructions. Floating point takes a little longer 
for multiplication, and considerably longer for 
addition (see (7)). 20-bit multiplication takes 
about 730 micro-instructions plus about 160 cycles for 
micro-instruction fetching, and at 5~ MHz would take 
about 160~sec; 20-bit addition takes about 12 ~sec. 
Multiplication of an array by a common number can be 
about four times faster. 

Main store mode arithmetic is faster than Array mode 
for smaller arrays. In terms of absolute speed, 
addition is about 11 times faster and multiplication, 
using a carry save technique ending with a ripple carry, 
is about six times faster for 20 bit precision (the 
latter factor increases with the precision). 

FIGURE ~. D.A.P. PERFORMANCE 

iooo 

. . . . . . . . . . . . . . . . .  .,,,o @. ,=,) 
(zo-~'r WOP.O$) 4 A . 4 A ~  ARR'AY HOOE 

~ /  / / . . M A I N  STORE kOO4[ i 

VECTOR MACHINE 

/ / 

I , P'ARENT IRACI41N 
/ I 

I I O  I O O  IOOO IO 4 io  $ i o  6 

PARALLEL DATA STREAMS 

The user has three modes of workingat his disposal: 
the parent machine for scalar working, Main Store mode 
for small arrays andArray mode for large arrays. 
Figure 3 shows roughly what is possible in the three 
modes; the useful processing rate in Million Instruc- 
tions (or, more accurately, results) Per Second (HIPS) 

is plotted against the number of parallel data streams 
for the type of computing indicated and a 9200 PE array. 
Only the top ends of the sloping lines depend on array 
size. The dashed line shows the similar graph for a 
powerful vector machine (there are many other differ- 
ences between the two types of machine). 

The overall performance depends on the application and 
programmer skill. 

2.8 A COMPARISON 

ILLIAC IV is a well known machine, so a brief com- 
parison is attempted withArray mode, assuming the 
problem parallelism is sufficient to occupy either 
machine. Many differences are not easily quantifiable, 
but as a starting point the main assumptions for a 
numerical comparison are given in Figure 4. The 
first four lines give the instruction mix; B is the 
number of bits precision for the serial design, which 
has no separate store acesses because all functions are 
store-to-store. P is the clock period (180 nsec). 
2~%is subtracted from the ILLIAC IV totals to allow 
for instruction overlap. 

FIGURE 4. 
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Figure 5 compares the hardware required to build an 
array of given performance for words of a particular 
precision. Logic and storage have equal weight; 
Figure 4 gives the gates/PE ratio and the storage 
comparison involves an estimate of the unnecessary 
bits in the ILLIAC IV word. The graph would favour 
ILLIAC IV only for working exclusivel,y with 46-49 bit 
precision. At low precisions serial PEs have a very 
big advantage. 

Such numerical comparisons are of only limited value. 
For example, the vertical scale of Figure 5 would be 
multiplied by about 4 if integrated circuit count were 
used as a hardware measure. Other factors such as 
hardware simplicity and repetition, pin counts and 
functional flexibility are equally important. 

2.9 EXAMPLE OF STORAGE ECONOMY 

For problems with large amounts of data, storage 
economy is important, particularly if it permits 
storing the complete problem in the array. The user 
can apply various tricks. As an example, consider 
three dimensional field problems. In olxler to prevent 
physical "truncation" errors, programs are designed so 
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that differences between neighbouring variables require 
fewer significant bits than the variables themselves. 
If variables have to be held simultaneously for two 
time steps, then, for example, they can be grouped into 
sets of 16 nearest neighbours in space and time (2 x 2 
x 2 x 2), and held as follows: (a) a short floating 
point number close to the maximum of the group (maybe 
a 4-bit mantissa and 3-bit exponent); and (b) 16 
differences in block floating point (maybe 12-bit 
mantissas and a common 2-bit block exponent). This 
results in 12.6 bits/variable and is roughly equivalent 
to floating point with a 15-bit mantissa and 3-bit 
exponent, i.e. a gain of nearly 50~; other machines 
require floating point variables to occupy up to 64 
bits, i.e. up to 5 times more. 

3. METEOROLOGY AS AN APPLICATION 

This is considered more fully in (7)- Meteorology 
includes both simulation experiments and forecasting, 
and as simulation programs are central to both, atten- 
tion wiI1 be confined to them. (Forecasting also 
uses analysis and initialisation programs to assimilate 
the "real" data). For simulation programs, the fre- 
quency of add/subtract and multiply instmuctions is 
roughly equal, and divide is much less frequent. For 
DAP, multiplication takes much longer than addition, 
so the number of multiplications and their timing give 
a first approximation to the speed of a program. 

The table gives a rough guide to parameters in use today 
and those that should be aimed at. 

Using the 18 bit(fixed point) precision suggested in 
Section 3.3, each PE can perform a multiplication in 
about 140~sec. Section 3.2 discusses the efficiency 
of PEusage; 50~might be a reasonable figure. Thus 
about 8000 PEs are adequate to perform the 2.5 x 107 
multiplications per second indicated above. 

TABLE 

Number of 
Vertical 
Columns of 
Grid Points 

Number of 
vertical 
levels 

Total number 
of variables 

Time step 

Number of 
time steps 

Multiplications 
per column per 
time step 

Multiplications/ 
sec. 

Speed-up over 
real time 

Present 

Forecast 
Programs 

3000 

10 

2 x 105 

2 rain. 

1000 

1000 

1.2  x 106 

5o-100 

Global 
Research 
Programs 

I0 000 

5 

2 . 1  x 10 5 

5 rain. 

10 000 

500 

1.2 x 106 

50-1 O0 

Next stage 

x4 

x2 

x8 (1.6 x10 6 ) 

+2 

x3 

x 2.5 

x20 (2.5 x 107 

50-100 

3-1 STORAGE 

It may be tempting to use a backing store for big 
problems; however, the smaller the array stor~e the 
larger is the channel capacity required. In (7) an 
example was studied of a problem using explicit 
integration which had I. 5 x 10 ° variables of avera~ 
length 20 bits, and was processed on an 8200 PE array 
with an I/O channel of 107 bits/sec. Three formula- 
tions of the problem had the following trade-of f s: 
(a) 1850 bits/PE and speed degBded by a factor of 
2•5, (b) 2800 bits/PE and speed degraded by I .3, and 
(c) 4600 bits/PE, the complete problem in the array 
and no degradation. A similar problem using implicit 
methods would have its speed degraded by an order of 
magnitude if a backing store was used. 

This sort of problem needs about 5-10 x 107 bits of 
storage. The falling cost of semi-conductor storage 
makes this ammmt of array storage feasible, and the 
simplicity and reliability of a unified semi-conductor 
system makes it attractive. Partly for these reasons, 
the array has more resources devoted to storage than 
to logic. 

3- 2 PAPA T,T,"~T,T~M 

Efficiency, defined as the fraction of time a PE is 
active, depends on programmer skill as well as the 
problem. Numerical procedures used at present have 
usually been devised with serial machines in mind, 
and sometimes a slightly different procedure may be 
much more efficient• 

Explicit methods for the "basic" meteorological 
equations axe efficient. Boundaries do not have much 
effect because it is usually a case of omitting things. 
"Secondary" effects may cause efficiency to drop. The 
computation is different if the air is saturated. 
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Convection may require the checking of neighbouring 
vertical layers for stability, followed by a relaxation 
process. Study indicates that these effects need not 
have a major effect on the overall efficiency. 

Once various conditions have been established "branch- 
ing" by means of activity bits is very rapid, and can 
be done frequently in order to improve parallelism. 
(A conditional branch in a conventional program loop, 
or selection in a vector machine, are slow by comparison 

Implicit methods involve either ADI (alternating direc- 
tion implicit) or rela~tion methods; the former are 
not particularly efficient but the latter are. 

There seem to be 4 types of grid in use: (a) rect- 
angular for fairly local forecasts; (b) octagonal in 
overall shape (rectangular neighbour cormection) for 
the northern hemisphere; (c) cylindrical on a global 
latitude-longitude basis; (d) as (c) except that the 
number of points on a line of latitude is reduced as 
the poles are approached. I~ I and (c)can fit a rect- 
angular PE array. (b) and would waste some of the 
PEs. (c) has reduced efficiency because a smoothing 
process is applied more times near the poles; this can 
be viewed as a trade-off for the wasted PEs of (d). 

3.3 PRECISION ANDNUMBERREPRES~TATION 

Precision costs time and storage space, so that big 
problems should use only the minimum consistent with 
accumulated round-off ezTor being small compared with 
other errors. Different v~iables can use different 
number representations and precisions. Knowledge of 
requirements is only patchy, but should improve; the 
pay-off, compared with fairly cautious starting schemes, 
night be a factor of about 1.5 in stor~e and 2 in 
speed. 

Meteorology is largely concerned with absolute rather 
than relative accttracy, and the max_imum possible values 
of variables are well understood; this points to either 
fractional fixed point or a simple floating point. 
Block-floating of arrays (9) can also be implemented 
efficiently. 

An example of possible economy in space and speed 
occurs in explicit integration schemes; the increments 
to variables require considerably less precision than 
the full variables. 

Careful choice of rounding method in order to avoid bias 
can also lead to economy (7). 

A reasonable estimate of the average precision required 
for fractional fixed point variables might be 18 bits 
and rather less for the mantissa of floating point 
variables. 

4. 0THERAPPLICATIONS 

An algorithm to solve the two dimensional Poisson's 
equation was studied. It used a Fast Fourier Trans- 
form technique, but the extensive data shuffling that 
this involved occupied only 20-25% of the time. There 
was also reduced parallelism in places, and a typical 
PE was idle about 50°% of the time.. On a 72 x 64 PE 
array, a 256 x 256 mesh was estimated to take 50 msec 
for 20-bit numbers; this compares very favourably with 
conventional machines. An interesting aspect is that 
the main array is held in ArBy mode and certain row and 
coltmm features are dealt with in I4~in Store mode; Main 
Store mode vectors s~re combined with the array elements 
in single arithmetic operations. 
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For the arBy to be useful, problems must fulfil 
three conditions: (a) Processing, as opposed to I/O, 
must be important; (b) Much of the problem must be 
programmed with parallel and identical operations 
(these may, however, be selective); (c) Excessive 
time should not be spent shuffling data rotmd the 
array. (In some cases this means the data should 
be fairly regular). 

These requirements are not very severe, and the biggest 
barrier to widespread use is likely to be in devising 
an acceptable progT~m{ng ls~iguage. (In spite of 
many problems being naturally parallel, many users 
are indoctrinated by sequential thinking). 

Some applications for array processors are discussed 
in (5). Further applications are suggested by the 
fact that the array can be used as an "associative 
processor"; examples night be air traffic control, 
graphics processing and symbol processing. Associative 
information retrieval can look attractive over quite a 
wide range of pa/ametere; with the associative latch, 
each PE can scan I bit every nicro-instruction, and so 
10 000 PEs can scan 5 x 1010 bits/second. 

The user has the freedom to optimise and experiment 
from the bit level upwards; this may help him under- 
stand his real computing requirements. The array is 
not arithmetic biased, and the ftmctional flexibility 
permits functions to be tailored for all sorts of 
purposes. The hardware simplicity permits parameters 
such as the number of bits/PE and the type of storage 
to be varied easily; for example, a slower, cheaper 
M0S version would extend the range of applications 
considerably. The array modularity (almost like 
stor~e modularity) means that sizes from 500 to 
30 000 PEs are reasonable. 
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