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Abstract

SIMD (Single Instruction stream, Multiple Data stream) parallel processing

has long been used to speed up image processing and other multimedia

operations. How ever, SIMD was usually implemented using large numbers

of custom processing elements. With the importance of multimedia

growing rapidly, it is a natural step to extend processor instruction sets with

some for m of SIMD multimedia support.

Gener ically, SWAR (SIMD Within A Register) is implemented by par titioning

the k-bit registers, data paths, and function units of a conventional

processor into n k/n-bit fields that can be processed using SIMD-parallel

instr uctions. Ordinar y instr uctions can be used, but special "SIMD

par titioned" instr uctions will often yield better perfor mance. AMD, Cyr ix,

and Intel have MMX (MultiMedia eXtensions); Digital Alpha has MAX

(MultimediA eXtensions); Hewlett-Packard PA-RISC has MAX (Multimedia

Acceleration eXtensions); Sun SPARC V9 has VIS (Visual Instruction Set).

This talk will briefly overview all the above SWAR models... and how SWAR

can be made into a viable target for data-parallel high-level language

compilers.

An introduction to SWAR is available online at

http://dynamo.ecn.purdue.edu/˜hankd/SWAR/
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Multimedia!

• Multimedia support sells systems

• Typical applications:

• Video (e.g., MPEG, editing, phones)

• 3D graphics (e.g., Doom, VRML)

• Digital photography (e.g., Photoshop)

• Audio (e.g., digital effects, mixing)

• Want to do these without custom chips
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Characteristics of Multimedia

• Generally bandwidth intensive

• Mostly operations on small integers

• 8-bit pixel color values

• 16-bit audio samples

• Lots of SIMD algorithms
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SIMD?

• Single Instruction, Multiple Data parallelism

• Ver y "VLSI friendly"

• Vector and data parallel programming models

• Deter ministic perfor mance and debugging

• Synchronous inter-PE communication

• Enable masking to turn-off PEs

• ANY and ALL testing for jumps
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SIMD Within A Register (SWAR)

• Divide 32-bit/64-bit/128-bit registers, datapaths, and

function units into multiple k-bit fields

• Perfor m SIMD operations across fields

• Improved bandwidth, Loads/Stores treat fields as a

block

• RISC-like SIMD control minimizes VLSI complexity,

pipeline constraints
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Targ et Hardware for SWAR

• Ordinar y 32-bit/64-bit processors

• AMD K6 MMX (MultiMedia eXtensions)

• Cyr ix M2 MMX (MultiMedia eXtensions)

• Digital Alpha MAX (MultimediA eXtensions?)

• Hewlett-Packard PA-RISC MAX (Multimedia

Acceleration eXtensions)

• Intel Pentium & Pentium Pro MMX (MultiMedia

eXtensions)

• Sun SPARC V9 VIS (Visual Instruction Set)

• Pow erPC will also have SWAR suppor t....
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A Por table SWAR Model

• Manufacturer SWAR support is machine dependent

• Different (often irregular) instructions

• Different width registers, fields

• Different register use constraints

(e.g., can’t mix MMX with floating point)

• HLL models specify each instruction

• Need complete SIMD/vector features

• Need var iable size/parallelism-width data

• Cannot have HLL-visible "holes"

(i.e., omit quirky SWAR instructions)
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Polymorphic Operations

• Parallel ops independent of field type (size)

Don’t need special instructions

• All bitwise operations are polymorphic

• ANY operation is polymorphic
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Partitioned Operations

• Parallel ops that enforce field partitioning

(e.g., cut carry/borrow chains)

• Most arithmetic requires partitioned ops

• Wrap-around (conventional)

• Saturation

• Three implementation methods (mix & match):

• Par titioned instr uctions

• Unpar titioned ops with correction code

• Controlling field values
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Partitioned Instructions
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Unpar titioned Ops with Correction

• Use ordinary 32-bit/64-bit op, but correct for field

interactions

• For 4 8-bit fields in 32-bit registers,

return(x + y);

t = ((x & 0x7f7f7f7f) + (y & 0x7f7f7f7f));

return(t ˆ ((x ˆ y) & 0x80808080));
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Unpar titioned Ops with Correction

• Can be expensive, especially for saturation

• Speedup comes from:

• More parallelism (e.g., 2-bit fields)

• Vector ized field Load/Store

• Reduced register pressure

• No par tial-value forwarding stalls
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Controlling Field Values

• Use ordinary 32-bit/64-bit op, but ensure field values

remain within fields

• By range analysis

(e.g., 0..100 + 0..100 fits in 8 bits)

• By clipping field values

(e.g., using partitioned vector minimum/maximum)

• By using "carry/borrow spacers"

• Effectively trades register space utilization for simpler,

faster, instr uction sequences
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Controlling Field Values

• 4 7-bit fields in 32-bit registers

• Par titioned addition:

return(x + y);

return((x + y) & 0x7f7f7f7f);

• Par titioned subtraction:

return(a - b);

return(((a | 0x80808080) - b) & 0x7f7f7f7f);

• Can optimize by tracking spacer values
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Communication

• Cheap, synchronous, inter-PE communication is a key

benefit of SIMD

• Two basic flavors:

• Neighbor-based

(e.g., like MasPar xnet)

• Router-based, "random"

(e.g., like MasPar router)

• x[y] is inefficient without hardware support... HP MAX

has a Permute instr uction
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Neighbor Communication

• 4 8-bit fields in 32-bit registers

• Send to "right" neighbor:

return(x << 8);

• With wraparound:

return((x << 8) | ((x >> 24) & 0x000000ff));

• Multi-hop neighbor communication is also easy
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Type Conversion

• Type conversion is field pack/unpack

• Par titioned instr uctions suppor t some pack/unpack

• Can be ver y inefficient serial code

• Conceptual problems:

• Field memory lay out/order?

• How to deal with size/width relationships?

• Suggest isolating native/SWAR layouts at the "SWAR

function" interface...
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Recurrence Operations

• Basic flavors:

• Associative reductions

• Scans (parallel prefix)

• Not much hardware support for these, and scans are

very expensive without it

Multimedia Extensions: SWAR Slide 19 of 23



Reductions: Summation

• Conventional C summation:

t = 0;

for (i=0; i<MAX; ++i) t += x[i];

return(t);

• 4 8-bit fields in 32-bit register, SWAR summation:

t = ((x & 0x00ff00ff) +

((x >> 8) & 0x00ff00ff));

return((t + (t >> 16)) & 0x000003ff);

• Not really ver y expensive...

C-coded SWAR summation of 1-bit fields easily outruns

the Intel Pentium population count hardware instruction!
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Enable Masking

• Need to be able to "disable" PEs...

but can’t really turn them off

• Some partitioned compare instructions can be used to

generate a bit mask...

• The basic "trick":

where (c) a = b;

t = (-!c);

a = ((c & b) | ((˜c) & a));

• Optimize by using masking only where:

• Some PEs might be disabled

• Not disabling could be observable
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Compiler Optimizations

• Spacer value tracking

• Enable masking optimizations

• Aggressive bitwise value tracking, e.g.:

return((x & 0x00ff) << 4) & 0xff00);

return((x << 4) & 0x0f00);

• Plus the usual stuff...
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So, What Are We Doing?

• Fall 1996, EE468 built a really crude SIMD-to-MMX

compiler

• Now, SIMD-to-any-SWAR compilers:

• Will be full public domain releases

• Small HLL designed to build functions callable from C

• HLL independent of target, except for parallelism

width and efficiency var iations

• Arbitrar y precision integer fields,

1-bit, 2-bit, 3-bit, ..., 32-bit

• SWAR code-generation target librar ies

• Manufacturers & applications researchers becoming

involved

• Later, SWAR across SMP and/or PAPERS clusters....
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