
Multimedia Extensions

For Microprocessors:

SIMD Within A Register

Hank Dietz

Assoc. Prof. of Electr ical and Computer Engineering

Purdue University

West Lafay ette, IN 47907-1285

hankd@ecn.purdue.edu

http://dynamo.ecn.purdue.edu/˜hankd

Multimedia Extensions: SWAR Slide 1 of 23

Abstract

SIMD (Single Instruction stream, Multiple Data stream) parallel processing

has long been used to speed up image processing and other multimedia

operations. How ever, SIMD was usually implemented using large numbers

of custom processing elements. With the importance of multimedia

growing rapidly, it is a natural step to extend processor instruction sets with

some for m of SIMD multimedia support.

Gener ically, SWAR (SIMD Within A Register) is implemented by par titioning

the k-bit registers, data paths, and function units of a conventional

processor into n k/n-bit fields that can be processed using SIMD-parallel

instr uctions. Ordinar y instr uctions can be used, but special "SIMD

par titioned" instr uctions will often yield better perfor mance. AMD, Cyr ix,

and Intel have MMX (MultiMedia eXtensions); Digital Alpha has MAX

(MultimediA eXtensions); Hewlett-Packard PA-RISC has MAX (Multimedia

Acceleration eXtensions); Sun SPARC V9 has VIS (Visual Instruction Set).

This talk will briefly overview all the above SWAR models... and how SWAR

can be made into a viable target for data-parallel high-level language

compilers.

An introduction to SWAR is available online at

http://dynamo.ecn.purdue.edu/˜hankd/SWAR/

Multimedia Extensions: SWAR Slide 2 of 23

Multimedia!

• Multimedia support sells systems

• Typical applications:

• Video (e.g., MPEG, editing, phones)

• 3D graphics (e.g., Doom, VRML)

• Digital photography (e.g., Photoshop)

• Audio (e.g., digital effects, mixing)

• Want to do these without custom chips

Multimedia Extensions: SWAR Slide 3 of 23

Characteristics of Multimedia

• Generally bandwidth intensive

• Mostly operations on small integers

• 8-bit pixel color values

• 16-bit audio samples

• Lots of SIMD algorithms

Multimedia Extensions: SWAR Slide 4 of 23

SIMD?

• Single Instruction, Multiple Data parallelism

• Ver y "VLSI friendly"

• Vector and data parallel programming models

• Deter ministic perfor mance and debugging

• Synchronous inter-PE communication

• Enable masking to turn-off PEs

• ANY and ALL testing for jumps

Multimedia Extensions: SWAR Slide 5 of 23

SIMD Within A Register (SWAR)

• Divide 32-bit/64-bit/128-bit registers, datapaths, and

function units into multiple k-bit fields

• Perfor m SIMD operations across fields

• Improved bandwidth, Loads/Stores treat fields as a

block

• RISC-like SIMD control minimizes VLSI complexity,

pipeline constraints

Multimedia Extensions: SWAR Slide 6 of 23

Targ et Hardware for SWAR

• Ordinar y 32-bit/64-bit processors

• AMD K6 MMX (MultiMedia eXtensions)

• Cyr ix M2 MMX (MultiMedia eXtensions)

• Digital Alpha MAX (MultimediA eXtensions?)

• Hewlett-Packard PA-RISC MAX (Multimedia

Acceleration eXtensions)

• Intel Pentium & Pentium Pro MMX (MultiMedia

eXtensions)

• Sun SPARC V9 VIS (Visual Instruction Set)

• Pow erPC will also have SWAR suppor t....

Multimedia Extensions: SWAR Slide 7 of 23

A Por table SWAR Model

• Manufacturer SWAR support is machine dependent

• Different (often irregular) instructions

• Different width registers, fields

• Different register use constraints

(e.g., can’t mix MMX with floating point)

• HLL models specify each instruction

• Need complete SIMD/vector features

• Need var iable size/parallelism-width data

• Cannot have HLL-visible "holes"

(i.e., omit quirky SWAR instructions)

Multimedia Extensions: SWAR Slide 8 of 23

Polymorphic Operations

• Parallel ops independent of field type (size)

Don’t need special instructions

• All bitwise operations are polymorphic

• ANY operation is polymorphic

Multimedia Extensions: SWAR Slide 9 of 23

Partitioned Operations

• Parallel ops that enforce field partitioning

(e.g., cut carry/borrow chains)

• Most arithmetic requires partitioned ops

• Wrap-around (conventional)

• Saturation

• Three implementation methods (mix & match):

• Par titioned instr uctions

• Unpar titioned ops with correction code

• Controlling field values

Multimedia Extensions: SWAR Slide 10 of 23

Partitioned Instructions

Multimedia Extensions: SWAR Slide 11 of 23

Unpar titioned Ops with Correction

• Use ordinary 32-bit/64-bit op, but correct for field

interactions

• For 4 8-bit fields in 32-bit registers,

return(x + y);

t = ((x & 0x7f7f7f7f) + (y & 0x7f7f7f7f));

return(t ˆ ((x ˆ y) & 0x80808080));

Multimedia Extensions: SWAR Slide 12 of 23

Unpar titioned Ops with Correction

• Can be expensive, especially for saturation

• Speedup comes from:

• More parallelism (e.g., 2-bit fields)

• Vector ized field Load/Store

• Reduced register pressure

• No par tial-value forwarding stalls

Multimedia Extensions: SWAR Slide 13 of 23

Controlling Field Values

• Use ordinary 32-bit/64-bit op, but ensure field values

remain within fields

• By range analysis

(e.g., 0..100 + 0..100 fits in 8 bits)

• By clipping field values

(e.g., using partitioned vector minimum/maximum)

• By using "carry/borrow spacers"

• Effectively trades register space utilization for simpler,

faster, instr uction sequences

Multimedia Extensions: SWAR Slide 14 of 23

Controlling Field Values

• 4 7-bit fields in 32-bit registers

• Par titioned addition:

return(x + y);

return((x + y) & 0x7f7f7f7f);

• Par titioned subtraction:

return(a - b);

return(((a | 0x80808080) - b) & 0x7f7f7f7f);

• Can optimize by tracking spacer values

Multimedia Extensions: SWAR Slide 15 of 23

Communication

• Cheap, synchronous, inter-PE communication is a key

benefit of SIMD

• Two basic flavors:

• Neighbor-based

(e.g., like MasPar xnet)

• Router-based, "random"

(e.g., like MasPar router)

• x[y] is inefficient without hardware support... HP MAX

has a Permute instr uction

Multimedia Extensions: SWAR Slide 16 of 23

Neighbor Communication

• 4 8-bit fields in 32-bit registers

• Send to "right" neighbor:

return(x << 8);

• With wraparound:

return((x << 8) | ((x >> 24) & 0x000000ff));

• Multi-hop neighbor communication is also easy

Multimedia Extensions: SWAR Slide 17 of 23

Type Conversion

• Type conversion is field pack/unpack

• Par titioned instr uctions suppor t some pack/unpack

• Can be ver y inefficient serial code

• Conceptual problems:

• Field memory lay out/order?

• How to deal with size/width relationships?

• Suggest isolating native/SWAR layouts at the "SWAR

function" interface...

Multimedia Extensions: SWAR Slide 18 of 23

Recurrence Operations

• Basic flavors:

• Associative reductions

• Scans (parallel prefix)

• Not much hardware support for these, and scans are

very expensive without it

Multimedia Extensions: SWAR Slide 19 of 23

Reductions: Summation

• Conventional C summation:

t = 0;

for (i=0; i<MAX; ++i) t += x[i];

return(t);

• 4 8-bit fields in 32-bit register, SWAR summation:

t = ((x & 0x00ff00ff) +

((x >> 8) & 0x00ff00ff));

return((t + (t >> 16)) & 0x000003ff);

• Not really ver y expensive...

C-coded SWAR summation of 1-bit fields easily outruns

the Intel Pentium population count hardware instruction!

Multimedia Extensions: SWAR Slide 20 of 23

Enable Masking

• Need to be able to "disable" PEs...

but can’t really turn them off

• Some partitioned compare instructions can be used to

generate a bit mask...

• The basic "trick":

where (c) a = b;

t = (-!c);

a = ((c & b) | ((˜c) & a));

• Optimize by using masking only where:

• Some PEs might be disabled

• Not disabling could be observable

Multimedia Extensions: SWAR Slide 21 of 23

Compiler Optimizations

• Spacer value tracking

• Enable masking optimizations

• Aggressive bitwise value tracking, e.g.:

return((x & 0x00ff) << 4) & 0xff00);

return((x << 4) & 0x0f00);

• Plus the usual stuff...

Multimedia Extensions: SWAR Slide 22 of 23

So, What Are We Doing?

• Fall 1996, EE468 built a really crude SIMD-to-MMX

compiler

• Now, SIMD-to-any-SWAR compilers:

• Will be full public domain releases

• Small HLL designed to build functions callable from C

• HLL independent of target, except for parallelism

width and efficiency var iations

• Arbitrar y precision integer fields,

1-bit, 2-bit, 3-bit, ..., 32-bit

• SWAR code-generation target librar ies

• Manufacturers & applications researchers becoming

involved

• Later, SWAR across SMP and/or PAPERS clusters....

Multimedia Extensions: SWAR Slide 23 of 23

