MIMD Interpretation
on a GPU

Hank Dietz and Dalton Young
LCPC, Oct. 8, 2009

University of Kentucky
Electrical & Computer Engineering

GPUs?

« Graphics Processing Units
e Lots of PEs, each with FP hardware
e Cheap & scalable hardware...
* SIMD-ish multi-threaded execution using
multiple, simplified, narrow SIMD engines
* The host does all the messy stuff

MIMD on a GPU?

* Hide the quirks & improve portability

* Use MIMD programs & programming tools

« Hardware isn't converging on a simple
design: Intel Larabee & AMD Fusion

* MIMD execution on SIMD was done before;
why not MIMD on a GPU?

Basic MIMD Interpreter

1. IR=mem|[PC++]

2. Decode instruction from IR

3. Repeat for each instruction type:
1. Disable PEs where IR!=Instruction
2. Simulate instruction
3. Enable all PEs

4. Goto 1

Performance Issues

e Interpretation overhead
e Coding of switch statement
e Sum of instruction simulation times

* Indirection — each PE from it's own address
* Banking, caching, & “owner writes”
emem[N/W][M][W] memory layout

e Masking overhead
* Divergent flow (within a warp)
 Predication
« Skipping (warps)

Assembler (mogasm)

* Multi-pass assemble to binary image coded
as Initialized data structures for mogsim

« Can combine multiple related/independent
programs/libraries with conditional assembly;
supports multi-lingual MIMD, not just SPMD

e Instruction bit patterns & field layout (8, 16, or
32-bit instruction words) can be automatically
customized per application

Simulator (mogsim)

« About 2,500 lines of C/CUDA source code
(compiler, assembler, etc. ~70,000 lines)

» C code repeatedly calls CUDA emulate(),
which runs until timeout or SYS

e Can be a generic interpreter or automatically

recoded to optimize a specific application
« Currently runs on any NVIDIA CUDA GPU

MOG PE Structure

Sequence of Single-Instruction
Subinterpreters (SIS)

e Subinterpreter handles just 1 instruction type
 Order subinterpreters to minimize cycles
* Frequency bias subinterpreter execution
« Consider the code: PUSH LD ADD ADD
e ADD LD PUSH takes 4 cycles
e PUSH ADD LD takes 3 cycles
e PUSH LD ADD takes 2 cycles
e PUSH LD ADD ADD takes just 1 cycle

Determining the Subinterpreter
Sequence for SIS & Opt-SIS

* Analysis based on instruction and instruction
digram frequencies from application runs

e Instruction frequencies determine mix

« Genetic algorithm evolves best order by
minimizing sum of frequency-weighted
digram spans

« Order using a generic application is SIS,
using the selected application is Opt-SIS

Selection of a Present
Instruction to Interpret (SIR)

* Method ensures fairness & progress

« Each PE fetches an instruction into his IR

* The designated PE within each warp copies
his IR into the warp-shared IR (SIR)

 All PEs decode SIR, but only those where
IR==SIR perform the instruction

« Opt-SIR uses decoder tree optimized using
application statistics

Divergent Factored Decoding
lgs)

* Decoding is slow; why not let each PE
decode the instruction in its IR, diverging, but
partially factoring decode?

* Decode is accomplished via an optimized
decode tree with the opcodes remapped for
the application in Opt-DFD

Factoring using Common
Subexpression Induction (CSI)

* The most effective method for MasPar MP1

* Break each instruction into microinstructions

« Maximally factor the microinstructions,
inducing common subexpressions

* Minimizes cost of PE memory references &
other expensive micro-ops, but increases
conditionals & per-PE state

The SW Variants (Opt-SIR-SW,
Opt-DFD-SW, Opt-CSI-SW)

* Opt variants rebuild mogasm and mogsim for
the particular application (profiling)
« SW variants use switch instead of a
decode tree:
* Opt-SIR-SW
e Opt-DFD-SW
e Opt-CSI-SW

Experiments

« GPU MOG vs. GPU Native ()
« Two simple per-PE benchmark codes:
e perf: 1M SIMD multiply-accumulates
e fact: 10K recursive, divergent, MIMD!
« Executed on various NVIDIA CUDA GPUs
with various host processors
 All 11 approaches tested everywhere...

Benchmark System

Configurations
Feature “Laptop” “Desktopl” | “Desktop2” | “Desktop3”
Host Processor Intel T'8300 AMD 4200+ Intel 920 AMD 4200+
NVIDIA GPU (CC) [8600M GT (1.1)|8800 GTS (1.0)|9800 GT (1.1)|GTX 280 (1.3)
GFLOPS: Host/GPU 9.2 / 91.2 10.5 / 345.6 |21.36 / 544.3| 10.5 / 933
Power: Host/GPU 35 / 22 89 / 146 130 / 125 89 / 236
GPU Cores/PEs 32 /1,024 96 / 2,304 112 / 3,584 | 240 / 10,560
Best Time: perf/fact| 9.63 / 10.55 NN 6.66 / 7.2 8.33 / 9.76

‘a\

Experimental Results

* Difference between GPUs was small and
trends were very similar on every target
(remember work scales with # of PESs)

* For perf (best native 1.46s):

* Worst-case MOG slowdown ~6.6X
e SYS calling native slowdown ~1.7%
* For fact (not natively possible):

Performance for perf & fact

Sis

optsis
—

oip —
#
-

optsirsw

I

optsir ——

—

opt dfdsw

Type of Interpreter

0 10 20 30 40 50 60
GPU Runtime in Seconds

1 Warp
2 Warps
M 3 Warps
M 4 Warps

5 Warps
M 6 Warps

7 Warps
B 8 Warps

Type of Interpreter

0 5 10 15 20 25 30 35

GPU Runtime in Seconds

i UNBRIDLED SPIRIT

‘/a-\
y}\

