Big ldeas

About Control Of Tiny Devices

Professor Hank Dietz
ECE Seminar, Sept. 14, 2007

University of Kentucky
Electrical & Computer Engineering

Abstract

The primary contribution of computer technology to society is not PCs, the
Internet, or supercomputing for "grand challenge" problems; it is the
ability to make an amazing range of ordinary devices intelligent.
Programmable control is everywhere -- except where the circuit
complexity of a microcontroller per device cannot be accommodated
and routing signals from many devices to a centralized controller is
iImpractical.

Over the past four years, we have been creating technologies that will
allow a parallel computer containing as many as millions of
independently programmable "nanocontrollers” to be embedded to
control an image sensor or display, MEMS chip, or array of
nanofabricated devices. Despite requiring as few as ~100 transistors per
nanocontroller, a conventional C-based programming environment is
supported. This talk will overview nanocontroller concepts, current
status of the research, and opportunities for collaboration.

(UNBRIDLED SPIRITy

/‘é;\%

Nanocontrollers

Programmable control for ANY device
Nanofabricated devices
MEMSs (e.g., DLP/DMD chips)
Bigger, low circuit density, things... LCDs,
organic semiconductor sheets, etc.
Assumes there are LOTS of nanocontrolled
devices in a system
Currently ~100 transistors/nanocontroller

What Must A Nanocontroller
Be Able To Do?

Minimal circuit complexity

Predictable real-time behavior

Localized analog & digital I/O

Coordination as a PE in a parallel computer

Each nanocontroller independently
programmable (MIMD parallelism)

Reprogramability

What Architecture
Can Do All That?

SIMD is closest
MIMD-on-SIMD technology, circa 1992:
Meta-State Conversion (MSC)
Common Subexpression Induction (CSI)
Worked for MasPar MP1 supercomputer,
but significance not appreciated...
Kentucky Architecture concepts:
SIMD masking + VLIW control flow
MSC + CSI = MIMD without code copies

Meta-State Conversion (MSC)

i1f(A){ do {B} while(C); }else{ do {D} while(E);} F

:
o S

Common Subexpression
Induction (CSI)

CSI reduces nanoprocessor time “disabled”
MSC states like {2,6} contain multiple code

blocks — original states 2 and 6 in this case
Execute time would be time(2) + time(6)
CSl tries to make 2 and 6 use the same

Instructions so execution time approaches
max(time(2), time(6))

Impact Of MSC + CSI

Minimal per-nanocontroller hardware

Real-time constraints can be maintained by
timing analysis in MSC + CSl or by polling a
(relatively slow) global clock signal

Coordination as a parallel computer can use a
SIMD-like inter-nanoprocessor network,
without hardware routing or arbitration logic

MIMD programs work as expected

Reprogramming might have a long compile
time, but is easily accomplished

Py

SPIRIT

Localized Device Control
Input/Output

Digital input: decoded like reading a register

Digital output: write a register

Analog input: measures a time constant
Reset analog accumulation by write
Threshold crossing detected by read
Timing is done by a software counter

Analog output: Pulse Width Modulation
PWM output is really a digital output
Filter in analog circuit (if needed)

Kentucky If-Then-Else (KITE)

First “Kentucky Architecture” design

Single, off-chip, program memory

Control Unit fetches a block of instructions at a
time and does VLIW-like multi-way branch

Control hierarchy allows nanocontrollers to
have a fast clock, despite a slow global clock

Only instruction is Store-If-Then-Else (SITE)

ITE is a 1-0f-2 multiplexor

ITE directly implements enable masking

KITE Abstract Architecture

e A// //

|I'E

Voache

Bas
Feic

[als
W
//
I

iy

_..-""‘F

i

" ///;/

i

Basic Block

ma«i‘?%

i UNBRIDLED SPIRIT ™

—~

KITE Nanoprocessor
Abstract Architecture

LT
SRR VAR ALABARAAARERAAARABAAB AR AR AR AAAR AR
R //,,,/,V/ﬁ W
DAL NN
WY

NI HH HHHHTHHHHN
T A
LA TN MW
..,”,___,.,” r”,“,,”,..__ AN - __. . /ff. f%ﬁ/ﬁ%f/”f

ARRN ARV

.r’.

LTI
LALMMIIIMMN
LALLM
/ .ﬂf L // RN . .Ff . L

..._.,__...._. ,.”.....,..H._...“..__ .__..ﬂ.._. , “—-_E ..__....,_,,...“ \
\ %%%,f,f_,ﬂfﬁ/,ﬂ,ﬂﬁﬁ W

\ /%H;%Wf///% NN
N fﬁﬁfwﬁ; AL EEEEAE TR AN

M W . /%,.,,H, ,HM,
H,,,,/,W%
TTITHIHH

NN

.:_,,
o »

AN — LR RERRARAR AN \
DAL - A
MR IR
W%%%%f e _.,,H,,_,HHHWH,,NN,V%/&,,, % ,,

NALETRTITHHHMN
DM

e
=
s
S

UNBRIDLED SPIRIT

K

KITE Nanoprocessor
Implementation Architecture

FromReg D Q — ToReg

T :

[fClock ElseNotThen SaveClock

Programming Language: BitC

A very small C dialect

Minor extensions to C data types:

Explicit precision using C bitfield syntax; e.g.,
int:3 x;

/O & network are register-mapped; e.g.,
int:1 adc@5;

All applicable C operators plus a few more: ?
< (min), ?> (max), $ (ones), etc.
The usual control flow constructs

mailto:adc@5

From Word-Level To Bit-Level

BitC code:
unsigned int:2 a, b, c¢;

¢ = a + b;

Unlike C, full precision results are available;
adding 2-bit values produces a 3-bit result

Bitwise logic expressions:
c0 (a0 XOR bO0)
cl (al XOR bl) XOR (a0 AND bO0)

ITE Equivalents For

Familiar Logic Operations
Like NAND, ITEs are complete

XORs are not efficient using ITEs

Logic Operation Equivalent ITE Structure
(x AND vy) (x ?2 yv : 0)
(x OR y) (x ? 1 : y)
(NOT x) (x 2 0 : 1)

(x XOR v) (x ? (v 20 : 1) : v)
((NOT x) ? vy : z) (x ? z : vy)

Transformation Into ITEs

Bitwise logic expressions:
cO (a0 XOR bO)
cl (al XOR bl) XOR (a0 AND bO)

ITE equivalents:

cO (a0 ? (bO 2 0 : 1) : bO)

cl ((al ? (b1 2 0 ¢ 1)) : bl) ?
(((a0 2 bO : 0) 2 0 : 1) 2
(a0 ? b0 : 1))

Enable Masking Using ITEs

Consider:

1f (a) { b=¢c; 1f (d) e=f; else g=h; 1=73; } k=1;

By simple if-conversion, we get:

b = (a ? ¢ : b);

e = ((a 2 4 : 0) 2 £ : e);

g = ((a ? (4?2 0 : 1) : 0) 2 h: qg);
1 = (a ? 7 i);

k = 1;

Our Transformation Into ITEs

We don't do simple

We have adapted logic circuit analysis and

minimization technology to optimize bit-serial

nanocontroller programs

hus far, 4 M.S. worth of work on this

Our techniques primarily extend those of
Bryant and Karplus involving normalization
of Binary Decision Diagrams (BDDs)...

Bryant's Normal Form

o e

/.f'
([65(4764:2
(85(4764:2))

r6=65 68(4267 :66) 70(42769:3)

Kmtudey%

UNBRIDLED SPIR

A Larger Example

a * a;

a=

°
I 4

:8 a

t

11

2l
-.ﬁ

LR

L = ity

e
B —r

_—

il Ay

e
e

- aph

UNBRIDLED SPIRIT

Preliminary Results

Compiler speed is not a problem
The normal form transformations perfectly
recognize even word-level identities identities
int a,b; a=a-b; a=a+tb;
generates no code!

int:12 a,b; a=a*b;

(solved in 2005/2006)

Register Allocation was the killer problem:
1-bit operations increase DAG complexity
Trinary ops increase DAG complexity
Basic blocks often needed

Needed to dramatically reduce MAXLIVE

Developed two new techniques: CTal
& SUN-GA

GA-Reordered MAXLIVE

GA-Reordered MAXLIVE
Vs.

4096 T T T T T T T T T T
°
-,
°
1024 - _
°
256 |- -
64 | -
16 | -
o8
eee
o 0 00000000000
4 | ® © 0 20000000 O -
e o 0 0 eoscooem
® o 0 00000000
1 1 P ‘ o—0-0-0-00 | 1 | 1 | N | 1
1 4 16 64 256 1024 4096

Original MAXLIVE

DAGs To Trees:
A Sample DAG

| 68(4767:66))

DAGs To Trees:
The Corresponding Trees

0 . T2y (N 71 ™ I:O 3
’ Y (Y () (Lol)
4 r0 N r4 3 L r2) (PR P
' / \ / \\\\,_ 7_74/7 , :,_ N

65(4764:2)

68(4767:66)

SUN-GA Experimental Results

Results from 32,912 accepted test cases... the
same ones used for the reordering GA, so
direct comparison of results is valid

The goal was to minimize MAXLIVE,
secondarily minimizing number of SITEs

Execution time was limited to about 1 minute
per test case on an Athlon XP

SUN GA Vs.

SUN-Based GA MAXLIVE

18

16

14

12

10

T T T &~ T
°
e 00 ® [] L] =
[@ o & o [] o0
° FI I YY TN TE YY" eo o @ -
L J SN @& 00 O WO W & e
® ® @0 06 (DN ¢ ODOOOEEDOEEE 00 000

@ © 0 0 ©00C0NNNNNNENS
o—b—o—0-e-0-0-soo0nsinsmm en—: ! ! !

4 16 64 256
Original MAXLIVE

1024

4096

i UNBRIDLED SPIRIT

/‘a\
y)x

SUN-Based GA Instruction Count (SITEs)

Vs. Original SITEs

4.1943e+06 g | y | : | : | : |

1.04858e+06 |
262144 |
65536 |-
16384 i

4096 |-

1024 |

256 |

64

4 16 64 256 1024 4096 16384

Original Instruction Count (SITEs)
Kentucky™
UNBRIDLED SPIRIT m

SUN-Based GA MAXLIVE

18

16

14

12

10

SUN GA MAXLIVE Vs.
CSEs Enabled

*—

® © © 8 0 000 00s00000IININNND
s—o—o—b—0-0-0-0-0-00bee !

nNe e

N o

8 16 32
SUN-Based GA CSEs Enabled

64

128 256

MAXLIVE Problem Solved

The Reordering GA wasn't good enough
Aggressive SUN-Based GA works:
increase in SITEs was common, worst
was 15,309 and became
MAXLIVE reduction also was huge, from a
maximum over all test cases of 3,409 to 18
(a 189:1 improvement!)
Fortunately, targeting a specific MAXLIVE can
greatly reduce SITE count

Current & Future Work

Physical implementation

“Logic under devices” issues

Details of the control hierarchy

Local and global I/O hardware details

Additional compiler improvements

Switched analog nanocontrollers?

“Killer applications” -- this month, we filed IP
iInvolving an application that could obsolete
both still and video cameras....

Questions?

Kentucky™

UNBRIDLED SPIRIT

Aggregate. Org

